日沿道 村上 IC ランプ橋の 温度ひび割れ抑制対策

~「空気」によるパイプクーリングでコンクリートを冷却~

Measures to suppress the Thermal Cracking of the Murakami IC ramp bridge

住谷 安子 ^{*1}	林 勉 *2	布野 勝文 *3
Yasuko SUMIYA	Tsutomu HAYASHI	Masafumi NUNO
三野 剛志 *4	渡部 寬文 ^{*5}	田村 和弘 *6
Takashi SANNO	Hirofumi WATANABE	Kazuhiro TAMURA

日沿道 村上ICランプ橋は支間長 66mを有する国内最大級の単径間PC箱桁で, 富配合の高強度コンクリート(σ ck=50N/mm²)を使用することや, 端支点部がマスコンクリート部材であることから, 温度応力による ひび割れの発生が懸念された。そこでコンクリート硬化時における温度上昇を抑制するため, パイプクーリン グの冷却媒体に「空気」を使用するエアパイプクーリングを採用した。その結果, コンクリートの温度上昇を 抑え温度応力によるひび割れ発生の防止を確認することができた。本稿では, エアパイプクーリングの評価方 法と実施工での施工結果について報告する。

キーワード:エアパイプクーリング、マスコンクリート、ひび割れ抑制、温度応力解析、高強度コンクリート

はじめに

PC上部工において, 張出し施工の柱頭部, 中間支点 や端支点横桁部などは, 部材断面の大きいマスコンクリ ート部材となる。そのため, セメントの水和熱によりコ ンクリート温度が大きく上昇し, 部材内部と外表面の温 度差による内部拘束応力の発生により, 表面に温度ひび 割れが発生しやすい状況になる。

温度ひび割れ抑制対策の一つとして、コンクリート部 材の内外温度差を小さくするため、内部にパイプを配置 して「水」や「空気」を通して内部温度を下げるパイプ クーリングがある。PC構造物では、コンクリート内の シース管などをクーリングパイプとして使用することが 可能であり、パイプクーリングは温度ひび割れ抑制対策

として合理的である。さらに冷却媒体として「空気」を 使用するエアパイプクーリングは水を汲み上げる大きな 設備や河川などへの排水の心配がいらない等のメリット がある。

本稿は、施工面でも利点が大きいエアパイプクーリン グを用いた温度ひび割れ抑制の評価方法の検証(解析条 件の妥当性確認試験)と、実施工での温度計測および施 工結果について報告するものである。

1.構造物の概要

日本海沿岸東北自動車道 村上 I C ランプ橋は,新潟県 村上市に位置するポストテンション方式 P C 単純箱桁橋 で,支間長 66m を有する国内最大級の単径間 P C 箱桁で ある。桁高は最大 3.3m であり,桁高支間比 (H/L)は1/20 となり,一般的な P C 箱桁に比べ桁高を制限している。 このため,富配合の高強度コンクリート(σ ck=50N/mm²) を使用している。さらに,端支点部は主桁幅 10.5m,横桁 幅 2.6m で桁高 2.8m を有するマスコンクリート部材とな る(図1)。これらのことから,セメントの水和熱に起因 する温度応力の発生によるひび割れが懸念された。

そのため、施工時に発生する温度応力の把握を目的と した3次元 FEM 温度応力解析を行い、ひび割れの発生が 懸念される箇所を調査し、温度ひび割れ抑制対策の必要 性を検討した。

2. 解析条件の妥当性確認試験

(a) 評価方法の検証

今回,温度ひび割れ抑制対策としてエアパイプクーリ ングを採用するにあたり,事前の温度解析によりコンク リート内部の冷却効果を評価し,確認する必要があった。 そのためには,クーリングパイプの送風状況を再現する ための,コンクリートとクーリングパイプとの境界条件 (熱伝達率およびパイプ内温度)の推定が必要であった。

(b) 熱伝達率

熱伝達率の推定は、土木学会コンクリート標準示方書 (以下,標準示方書と記す)の数値を用いて行った。標 準示方書の[設計編:標準]4編:温度応力解析2章:温 度解析2.2境界条件と初期温度条件【解説】には、風速 の記述として「風速の影響は、通常のコンクリートの露 出面では風速2~3m/sの場合、熱伝達率は12~14w/m²℃ であり、風速の増加に伴い、熱伝達率は増加し、その増 加割合の目安は風速1m/s 当り2.3~4.6w/m²℃程度であ る」とあり、以上を基に風速と熱伝達率との関係を図2 のように設定した。

(c) パイプ内温度

クーリングを行う場合のパイプ内温度は, 試験体のパ イプ内温度の実測値より, 外気温とほぼ一致することが 確認できた。したがって, 解析ではパイプ内の熱伝達境

界の温度は、外気温で設定することとした。

(d) 解析に用いた物性値

解析に用いた熱物性値,強度物性値および熱伝達境界 条件を表1に示す。

	項目	係数・単位	物性値	備考	
熱物性	熱伝導率	W/m°C	2.7		
	密度	Kg/m ³	2340		
	比熱	KJ/kg°C	1.29		
	打設温度	°C	17	実測値	
	セメント種類	-	普通		
	セメント量	Kg/m^3	413	50N/mm ² 配合	
	断熱温度 上昇特性	Q	59.07		
		r	1.300		
境界条件	木枠		8.0		
	発泡型枠		0.173	厚さ 200mm	
	パイプ①	W/III C	30.3	風速 7.5m/s	
	パイプ②		56.1	風速 15m/s	
	外気温 (パイプ内温度)	°C		実測値	

表1 解析条件

(e) 試験体

試験体は実物大のパイプ近傍の切出しモデルとし、断面は外ケーブルの標準的な配置ピッチとして 600mm×600mmの正方形断面とした。試験体の周囲には断熱材として厚さ 200mm の発泡スチロールを配置して断熱境界とした。試験体の図面を図3に示す。

(f) 試験体種類

妥当性確認試験として,試験体を全9体作成し,温度 計測を行った。エアパイプクーリングの有無の他に,比 較対象として,試験体長さは柱頭部と端支点横桁部を想 定した2種類,クーリングパイプの材質は外ケーブルを 想定した鋼管とポリエチレン管の2種類,送風する風速 は7.5m/sと15m/sの2種類の試験体を製作し,比較試験 を行った。試験体種類を**表2**に示す。

NO.	試験体	パイプ材質	風速 m⁄s	熱伝達率 W/m²℃	備考
AS-0	長さ	鋼管	0	0	パイプ端閉鎖
AS-1	5. Om	(<i>ф</i> 139.8)	0	0	パイプ端解放
AS-2			7.5	30. 3	
AS-3			15.0	56. 1	
AP-2		ポ リエチレン (<i>ゆ</i> 175)	7.5	30. 3	
BS-1	2. 5m	鋼管	0	0	パイプ端解放
BS-2		(<i>ф</i> 139.8)	7.5	30. 3	
BS-3			15.0	56. 1	
BP-2		ポリエチレン (¢175)	7.5	30. 3	

表2 試験体種類

(g) 試驗方法

試験状況を写真1に示す。

写真1 試験状況

送風機(φ 400, 風量 110m³/min) に分岐管を設置し, 2つに分岐したホースをクーリングパイプに挿入して送 風を行った。排気口で風速計にて風速を計測し,風速 7.5m/s および 15m/s 程度になるよう風量の確認を行った。 なお,エアパイプクーリングの送風期間は5日間とした

(h) 温度解析モデル(試験体)

温度解析モデルは、断面中央にクーリングパイプを配 置した試験体の対称 1/2 モデルとした。解析モデルおよ び熱伝達境界条件を図4に示す。

(i) 試験体の実測値

試験体長さ 5.0m の断熱境界近傍(最高温度)でのコン クリート温度を図 5 に示す。

各ケースとも,風速より推定した熱伝達率を用いた解 析値と実測値はほぼ一致した。

クーリングの有無による比較では,実測値はパイプに 送風しない場合(AS-1),コンクリート内部で70℃まで 上昇するのに対し,エアパイプクーリングを行う(AS-2 およびAS-3)ことで50℃以下に低減した。

また,パイプ端を閉鎖した場合(AS-0)と解放した場合(AS-1)では,内部温度はほぼ同値となり,パイプ内を断熱状態(熱伝達率 0w/m²℃)とした場合の解析値とほぼ一致した。

パイプの材質の比較では、鋼管およびポリエチレン管 の計測値はほぼ一致し、パイプクーリングの冷却効果は パイプの材質によらないことを確認した。(熱伝導率は 鋼:45w/m℃程度,ポリエチレン:0.5w/m℃程度と約100 倍違うが,パイプの板厚が薄いため材質の影響がほとん ど無いと思われる)。

上記の結果は 2.5mの試験体(BS-1~3 および BP-3)で も同じ傾向を示した。

今回の妥当性確認試験により,エアパイプクーリング は「風速」により推定される熱伝達率を用いることでコ ンクリート内部の冷却効果が評価できることを確認した。

3. 実構造物への適用(事前解析)

(a) 施工方針の検討

実構造物でのエアパイプクーリングの効果を事前に確認するため、実橋の解析モデルにて温度応力解析を行い、 温度ひび割れ抑制効果の比較検討を行った。

標準示方書では、温度ひび割れ照査方法として温度ひ び割れ指数がある。温度ひび割れ指数とはコンクリート の引張強度とコンクリートに生じる引張応力を比較した 値である。ひび割れ指数は、その値が小さいほどひび割 れが発生しやすいとされており、ひびわれを防止したい 場合は 1.75 以上、ひび割れを制限したい場合は 1.45 や 1.0 以上となるよう、できるだけ大きくする必要がある。

温度ひび割れ指数 =	コンクリートの引張強度		
	コンクリートに生じる引張応力		

今回の比較検討では、ひび割れ指数が 1.0 以下(発生 する引張応力がコンクリートの引張強度を超える)にな る領域を比較し、パイプクーリングの効果を確認する。

解析ケースを**表 3** に示す。風速によるクーリングパイ プの熱伝達率は先述の妥当性確認試験にて使用した値を 用いた。

CASE		パイ	風速		
	CASE	橋軸方向	橋軸直角方向	m/s	
1	対策なし	外ケーブル +落橋防止 (送風なし)	_	0	
2	外ケーブル+落橋防止 のみ送風(風速7.5m/s)	外ケーブル	_	7.5	
3	外ケーブル+落橋防止 のみ送風(風速15m/s)	→ 田間の正 鋼管	_	15. 0	
4	外ケーブル+落橋防止 +横方向にパイプを追加	Ψ139.8mm (送風)	ポリエチレン管 の35mm	7.5 7.5	

表3 解析ケース

エアクーリングを行わない場合と、クーリングパイプ として、橋軸方向の既設の外ケーブル用定着管および落 橋防止装置孔を使用した場合(送風は2種類),さらに 橋軸直角方向に 435mmのポリエチレン管を追加した場合 の4ケースの検討を行い、冷却効果やコスト面を考慮し て最適なケースを選択することとした。

(b) 解析モデル(実橋)

温度解析モデルは,外ケーブル用定着管および落橋防 止装置孔を配置した端支点横桁部および2室箱桁部の対 称形1/2モデルとした。解析条件を表4,解析モデルを図 6に示す。

表4 解析条件(村上ICランプ橋)

	項目	係数・単位	物性値	備考
熱物	熱伝導率	W/m°C	2. 7	
	密度	Kg/m^3	2340	
	比熱	KJ/kg°C	1.29	
	打設温度	°C	21	外気温+5℃
性	セメント量	Kg/m ³	418	
	断熱温度	Q	58.18	
	上昇特性	r	1.918	
		а	4.5	
	圧縮強度	b	0.95	
		d	1.11	
強		N/mm ²	JSCE 式	
度物性		N/mm ²	50	28 日強度
	ヤング係数	N/mm ²	JSCE 式	
	引張強度	N/mm ²	JSCE 式	
	ポアソン比	_	0. 2	
	線膨張係数	μ /°C	10	
	木枠		8.0	
境	パイプ①	₩/m²°C	30.3	7.5m/s
界条	パイプ②		56.1	15.0m/s
件	外気温 (パイプ内温度)	°C	1 年 周期	

図6 解析モデル (実橋)

(c) 解析結果(ひび割れ指数)

各解析ケースの最小ひび割れ指数の分布を図7に示す。 着色部分はひび割れ指数1.0以下を示す。

エアパイプクーリングを行わない CASE-1の着色面積と 比較して,送風した CASE-2 および CASE-3 では,横桁端 面の着色面積が大幅に減っていることが確認できる。更 に,橋軸直角方向にポリエチレン管を配置した CASE-4 で は,横桁内部の着色面積も小さくなり,最小のひび割れ 指数も0.5 から0.9 まで大きくすることができた。

以上より、本橋では CASE-4の、橋軸方向の既設の外ケ ーブル定着管(片側5本)および落橋防止装置孔(片側

4本)に追加して,橋軸直角方向にポリエチレン管を4 本配置してエアパイプクーリングを行うこととした。

(d) 風速による効果の比較

CASE-1から CASE-3の風速の異なる3ケースについて, 着色部分の合計面積を比較したグラフを図8に示す。

対策なしの CASE-1 と比較して,送風を行うことで着色 面積を約 70%低減することができた。ただ,送風する風 量(風速)については,風速 7.5m/sと 15m/sで大きな差 がなかったことから,本橋では送風設備のコスト等を考 慮して,風速 7.5m/sで送風を行うこととした。

(e) 補強鉄筋の配置

風量を風速 7.5m/s として CASE-4 のパイプ配置にてエ アパイプクーリングを行った場合の解析結果に基づき, ひび割れ指数1.0以下(ひび割れ指数分布図の着色部分) の位置にコンクリートの引張応力に対して必要な温度ひ び割れ補強鉄筋を配置した。

4. 実構造物の施工

(a) エアパイプクーリング設備 村上ICランプ橋で使用したエアパイプクーリングの 設備を**写真2**および**写真3**に示す。

写真2 エアパイプクーリング設備 全景

(a)送風機(Ф300)

(b)分岐管

(c) ホース

写真3 エアパイプクーリング設備

橋軸方向の外ケーブル定着管および落橋防止装置孔へ の送風は、1台の送風機(ϕ 300,風量70m3/min)に分岐 管を設置し、3つに分岐したホースをシース管に挿入し て送風を行った。送風は箱桁内部から行い、横桁端面側 へ排気した。橋軸直角方向のポリエチレン管への送風は、 コンプレッサーを使用して、分岐管を介して4つに分岐 させたホースの先端をポリエチレン管に挿入した。

(b) 送風管理方法 風速の計測状況を**写真4**に示す。

写真4 風速 計測状況

コンクリート打設を行う前に,定着管および落橋防止 装置孔の排気口で風速計にて風速を計測し,風速 7.5m/s 以上になるよう風量の確認を行った。

5. 実橋の計測結果

(a) 計測位置

事前解析と実構造物との比較を行うため,実橋の端支 点横桁内のコンクリート温度を測定して解析値との比較 を行った。

コンクリート温度の計測位置を図9に示す。

(b) 計測結果

コンクリート温度の計測結果および解析値のグラフを 図10に示す。エアパイプクーリングの送風期間は、事前 解析により外気温とコンクリート内部温度の差が20℃程 度となる時点を確認し、5日間とした。解析値と実測値の 最高温度の差は約5℃となった。これは外気温が解析と打 設当日の実測値で約5℃の差があり、その影響と思われる

(外気温は解析では16℃,打設当日は10~12℃であった。 また、コンクリートの打設温度も解析は21℃,打設当日 は17~19℃と約4℃の差があった)。それらの点を考慮し、 事前解析と実測値ではコンクリート温度の推移はほぼ一 致する結果となった。

図10 コンクリート温度

解析と比較して,実測値の方がコンクリート温度が低いことや,温度履歴の勾配が緩やかなことなどから,解 析により算出した引張応力は,実橋に発生する温度応力 と同等もしくはそれ以下になると思われる。

以上の結果より,解析により算出した引張応力および 引張応力より算出した引張を抑制する補強鉄筋量は妥当 であると判断した。

6. まとめ

PC構造物の温度ひび割れ抑制対策(マスコンクリー ト対策)として空気を送風するエアパイプクーリングを 行った。今回の検討により以下の結果を得られた。

・エアパイプクーリングはコンクリート内部温度を下 げ,発生する引張応力を低減できる,温度ひび割れ 抑制対策として有効な方法であることが確認できた。

- ・クーリングの効果は、送風したシースの熱伝達率を
 管内風速の関数として与えた方法で再現できること
 が確認できた。
- ・送風を行わない場合のパイプ内温度は、コンクリート部材内部の温度とほとんど変わらないことが確認できた。
- エアパイプクーリングの温度低減効果は、クーリン グパイプの材質では大きな影響は受けず、風速によ り算出した熱伝達率を使用できることが確認できた。

エアパイプクーリングによる温度ひび割れ抑制対策を 事前解析および妥当性確認試験から定めた方法に従って 施工した結果,有害なひび割れのないPC箱桁橋が完成 した。

今後は、本橋での施工や実測の結果をふまえ、エアパ イプクーリングを行う際のパイプの設置位置や送風量、 送風設備など、さらに改良を重ね、有効なひび割れ抑制 対策として採用していきたい。

写真5 村上ICランプ橋 全景

参考文献

1) 三厨, 小坂, 山口, 吉田: PC鋼線用シースを利用した空気に よるパイプクーリング工法, コンクリート工学年次論文報告集, Vol. 17, No. 1, pp. 1157–1162, 1995.

2) 笹倉, 伊藤, 三島, 中島: エアパイプクーリングによる温度ひ び害い抑制効果に関する研究, コンクリート工学年次論文報告集, Vol. 24, No. 1, pp. 981–986, 2002.

3) 江崎,瀬戸,杉橋,倉知: PC用シース管を用いたエアクーリングについて、土木学会年次学術講演会論文集,No. 58/VI-273, pp. 545-546, 2003.

4) 住谷,林,布野,渡部:エアパイプクーリングによる温度ひび 割れの抑制,第20回プレストレストコンクリートの発展に関するシ ンポジウム, Vol. 20, pp. 425-428, 2011.