プログラム紹介

V-nasClair 3D 構造物オプション

~CIM 対応 3D モデル作成支援システムの開発~

V-nasClair 3D Structure Option

長尾 充博 *¹ Mitsuhiro NAGAO 尾畑 圭一 *² Keiichi OBATA

1. はじめに

国土交通省が取り組む CIM (Construction Information Modeling/Management)では、形状や材質などの属性情報を付加した 3D モデルと ICT ツールとの利用により、企画、調査、計画、設計、積算、施工、維持管理などの各フェーズ間でのデータ共有、データー元化により建設生産システムの効率化を目指しています。

川田テクノシステム㈱では、CIM における属性付き 3D 設計データの入出力を前提とした、「3 次元汎用 CAD V-nasClair」で動作する 3D モデル作成プログラム「3D 構造物オプション」を開発しました。

昨今 3D モデル作成用ソフトは数多く存在しており, 無償のソフトでもかなり複雑な形状のモデルを作成する ことが可能です。それらの 3D モデリングソフトや既出 の CIM/BIM ソフトと差別化を図るため,本プログラ ムでは対応構造物と形状を絞り込み,専用の作成編集機 能を搭載する事で詳細設計レベルの複雑な形状を素早く 短時間で作成可能にすることを追求しました。また線形 データや地形データから形状を自動決定する機能を搭載 し他社製品との差別化を図りました。

2. プログラム概要

「3D 構造物オプション」は 3 次元汎用 CAD 「V-nasClair」のオプション製品として開発されました。 橋台,橋脚,ボックスカルバートなどの土工構造物の 3D モデルを作成・編集することができます。リリース済み の「3D線形オプション」や「3D 地形オプション」との 連携により,橋台や橋脚の計画検討が行えるほか,下部 工座標計算書の出力に対応しました。

3. 3D 構造物モデルの作成

3D 構造物モデルの作成・編集はデータ内の 3D 構造物 モデルを一括管理する「3D コントロールパネル」で行 います。「3D コントロールパネル」は「構造物ツリー」 「データ入力」「プレビュー」エリアに分かれています。

3D構造物コントロールパネル

構造物ツリーには路線単位で体系的に管理された構造 物を表示します。

各データは「データ入力」エリアに表示される構造物 毎の専用ダイアログにより入力します。入力中の構造物 はプレビュー上にリアルタイムに表示され,側面や平面 を確認しながら,構造物の配置位置や形状検討が行えま す。構造物の形状決定後は,全体モデルに入力形状を反 映させます。

(2) 3D 地形オプションとの連動

橋台,橋脚において 3D 地形オプションで作成した地 形に対し根入れ長を指定することにより竪壁高,柱高 の自動設定が可能です。

(3) 構造物配置位置変更時の形状自動計算

構造物の位置を変更すると関連付けられた線形,地形 から形状を自動的に計算し,リアルタイムに反映させ ることが可能です。

形状自動変更のイメージ

4.今後の展開

今後は対象構造物,対応形状の拡張,上部エモデル 作成機能,設計ソフトとの連携機能,橋梁一般図作図 機能などの搭載を行う予定です。

また今後開発予定の 3D 道路概略設計オプション, 3D 配筋オプションとの連携を図り CIM の本格運用 に向けてラインナップの拡充を進めていきたいと思 います。

形状入力から3Dモデル作成

4. 他 3D オプションとの連動

構造物の形状データは数値による入力の他,「3D 線形 オプション」で作成した道路線形や「3D 地形オプショ ン」で作成した地形から自動的に形状を取得することが 可能です。

(1) 3D線形オプションとの連動

3D 線形オプションで作成した線形データから下記 データの取得が可能です。

構造物	データ	取得方法
橋台	パラペット形状	道路線形と断面線との交点 から幅員,標高を取得
	沓配置	支承線断面線と桁線形の交 点から取得
	ウイング形状	道路線形とウイング長さよ り角度,天端標高を取得
	フーチング幅	パラペット天端形状,張り出 し長より決定
橋脚	沓配置	支承線断面線と桁線形の交 点から取得
ボックスカ ルバート	本体形状	道路線形と構造物中心との 交点より断面形状を決定
	ウイング形状	道路線形とウイング長など により決定

