**^{うたなべ} 新名神高速道路 京田辺高架橋の設計

Design of Kyotanabe Viaduct in the New MEISHIN Expressway

梅田 隆良	月*1	大久保	孝 * ²	鈴木	聡*3
Takaaki U	MEDA	Takashi (OKUBO	Satosh	i SUZUKI

農坂 真 ^{∗4} Makoto NOUSAKA 脇 佑輔 ^{∗₅} Yusuke WAKI 西村 勝 *⁶ Masaru NISHIMURA

京田辺高架橋は、京都府京田辺市に建設される新名神高速道路(近畿自動車道名古屋神戸線)で、延長1590.1 m(上下線)の橋梁である。本橋は、P35-P50径間およびP50-A2径間のPRC連続混合桁橋(箱桁+2主版桁)、P22-P35 径間のプレテンション連結T桁橋、P12-P22径間のPRC連続2主版桁橋から成る。本稿では、移動支保工施工とな る混合桁橋区間と多点固定構造をメナーゼヒンジ鉄筋で実現したプレテンション方式多径間連結T桁橋区間の詳 細設計について報告する。

キーワード:移動支保工施工 混合桁 多点固定多径間連結プレテン桁 メナーゼヒンジ 連結部 PRC 構造

1. はじめに

京田辺高架橋(以下,本橋)は,京都府京田辺市に建 設される新名神高速道路(近畿自動車道名古屋神戸線) で,延長1590.1 m(上下線)の橋梁である。本橋の特 徴は,P35-P50径間およびP50-A2径間の混合桁橋(箱桁 +2主版桁)は工期短縮を図るため,2主版桁橋の施工に 移動支保工施工を採用した点,P22-P35径間のプレテン ション T 桁橋は、中間支点部にメナーゼヒンジ鉄筋を用 いた多点固定多径間連結構造となっている点である。

2. 橋梁概要および設計条件

本橋の橋梁諸元を表1,一般図および断面図を図1に示 す。

橋梁諸元								
路線名:	新名神高速道路(近畿自動車道 名古屋神戸線)							
橋名:	京田辺高架橋							
工事場所:	京都府京田辺市大住池島~松井諏訪ヶ原							
道路規格:			第	1種第2級B規格(暫定),	第1種第1級B規格(完成	t)		
構造形式:	P50-A2上り	P50-A2下り	P35-P50上り	P35-P50下り	P22-P35上り	P22-P35下り	P12-P22上り	P12-P22下 り
	PRC15径間連続混合桁	PRC14径間連続混合桁	PRC15径間連続混合桁	PRC15径間連続混合桁 PCプレテンション方式	PCプレテンション方式			
	2主版桁+1室箱桁	2主版桁+1室箱桁	2主版桁+1室箱桁	2主版桁+1室箱桁	13径間連結T桁	13径間連結T桁	PRGIU性间建税2土版桁	PRGTU控间建物2土版桁
橋長:	484. 006m	486. 976m	487. 091m	487. 904m	296. 741m	296. 255m	321.540m	319.656m
析長:	368.7(2主)+70.5m(箱) +45.1m(2主)	376.7(2主)+88.5m(箱) +19.1m(2主)	379.1(2主)+88.5m(箱) +19.1m(2主)	388.6m(2主)+98.1m(箱)	19. 341m+23. 0m*9+18. 3m +23. 3m+23. 085m	18. 855m+23. 0m*7+18. 3m +23. 3m*3+23. 085m	319.846m	319. 846m
支間長:	31. 4m+34. 0m*5 +31. 0m*5+25. 0m +43. 5m+29. 5m+28. 4m	31. 4m+34. 0m*5 +31. 0m*5+35. 0m +57. 5m+33. 9m	30. 9m+33. 0m*2 +28. 0m*2+31. 0m*7 +24. 0m+57. 5m+33. 85m	33.9m+35.0m +28.0m*3+31.0m*7 +33.5m+59.0m+22.85m	18. 591m+22. 6m∗9 +17. 6m+22. 6m+22. 4m	18. 105m+22. 6m∗7 +17. 6m+22. 6m∗3+22. 4m	26. 6m+27. 5m*2+32. 5m +35. 0m*5+29. 606m	26. 6m+27. 5m*2+35. 0m*2 +32. 5m+35. 0m*3+29. 606m
	: 上り線11.420m~11.050m~10.850m							
	下り線10.900m~11.000m~10.950m							
有効幅員:	: 10.000m(上下線)							
平面線形:	R=2000m~A=750m~A=1000m~R=3000m							
縦断勾配:	i=0. 380%∼-3. 000%∼-0. 327%							
横断勾配:	i=−5. 000%~-2. 500%~2. 500%~3. 000%							
斜角:	90度							
設計荷重:	B活荷重							

表1 橋梁諸元

*4 川田建設㈱北陸支店技術課 課長

*5 川田建設㈱西日本統括支店事業推進部工事課

*6 川田建設㈱西日本統括支店技術企画室 部長

図1 一般図および断面図

論文・報告新名神高速道路京田辺高架橋の設計

3. 混合桁橋区間の設計

(1) 移動支保工施工への設計時対応

a)設計時の課題

移動支保工支持方法には、柱頂部を先行施工する方法 もあるが、本橋は橋脚施工と並行施工となることから、 柱頂部を先行施工せず、橋脚上で直接支持する方法を採 用した。移動支保工支持概要図および施工状況写真を図 2、写真1に示す。支持台は、中間床版に開口を設け、主 桁間に設置されるため、中間支点横桁は移動支保工が移 動し、支持台を撤去した後に施工することとなる。

また,基本設計では,主方向 PC 鋼材配置は1径間毎 のたすき掛け配置であったが,移動支保工施工の場合, たすき掛け配置とすると,たすき鋼材緊張用の足場を別 途設置する必要が生じるなど,移動支保工の利点である 工程短縮を有効に活かすことができない。そのため,以 下の点を設計時に考慮した。

- i)中間支点横桁の有無による発生断面力の
 影響を考慮した断面力解析
- ii)中間支点横桁を後施工とした主桁および 横桁の配筋計画
- iii) 主方向 PC 鋼材にカップラー継手を採用

写真1 施工状況

b)設計時の課題に対する対応

i)中間支点横桁施工時期を考慮した断面力解析 詳細設計における断面力解析は,主桁自重および橋面 荷重,活荷重の算出を格子解析にて実施した。本橋の支 承配置は,中間支点上において,主桁軸心と支承位置が 偏心しているため,中間支点横桁がない場合,主桁自重 によるねじりモーメントが発生する¹⁾。そこで,中間支 点横桁の有無によるねじりモーメントの変化を把握する ため,以下の検討を行った。検討モデルを図3に示す。

検討結果(図4)より,主桁施工時に中間支点横桁が 無い場合,中間支点横桁が有る場合に比べ,主桁自重に よるねじりモーメントが10倍程度大きくなる。ただし, 中間支点横桁の施工時期の違いによる発生ねじりモーメ ントには6%程度しか違いが見られなかった。

このことから, 主桁自重載荷時における支点横桁の有 無が, ねじりモーメントに与える影響は大きいが, それ 以降に載荷される荷重による断面力の差は, 横桁施工時 期の影響を大きく受けないことが分かる。よって, 後荷 重(橋面荷重,活荷重)載荷時までに中間支点横桁の施 工を完了すれば, 完成系での力学性状に問題はないと判 断した。以上を踏まえ, 詳細設計では中間支点横桁の施 工時期を考慮したねじりモーメントを設計に反映した。

図4 ねじりモーメント検討結果

ii) 中間支点横桁部の配筋計画

中間支点横桁は後施工となるが, 主桁間には移動支保 工支持台があるため, 横桁鉄筋を突出させておくことが 困難であった。また,先行施工となる中間床版内にまで 横桁鉄筋を配置する場合,継手箇所が多数となり型枠形 状や鉄筋配置が煩雑となる。そこで,主桁ウェブ面から の横桁鉄筋配置について,機械式継手を採用した。また, 中間床版と横桁を分離構造(写真 2)とすることで,配 筋および型枠の煩雑さを改善した。配筋概要を図5に示 す。

図 5 中間支点横桁部配筋概要

写真2(1) 支持台撤去前の支点横桁部

写真2(2) 支持台撤去直後の支点横桁部

写真 2(3) 中間支点横桁配筋状況

写真 2(4) 完成時中間支点横桁

論文·報告 新名神高速道路 京田辺高架橋の設計

また、本橋の移動支保工施工区間では横断勾配が交番 するため、横断勾配の変化への対応は、型枠を回転させ る構造とした。横断勾配によっては支承が主版幅からは み出すことが確認されたため、横断勾配に対する主桁の 回転と支承配置について、中間支点部の主桁ウェブ側面 の形状を、横断勾配を考慮した主桁の回転配置に合わせ て、勾配の高い側のウェブを鉛直に打ち下ろす形状とし た(図6)。これにより支承の配置が可能となった。

図6 橋体の回転配置とウェブ打ち下ろし形状

iii) カップラー継手採用部のグラウト充填確認 主方向 PC 鋼材シングルストランド 1S28.6 プレグラウ トに対するカップラー継手は、新東名高速道路でも多数 実績がある。中日本高速道路㈱では、カップラー継手の 採用に際し、カップラー部のグラウト充填性能確認試験 を実施し、充填性能を確認しているが、試験は定着角度 が最大で 10 度までとなっていた。

本橋の詳細設計で決定したケーブル配置形状は,施工 目地部での架設時引張応力度を引張制限値内に収めるた め,定着角度が最大で15度となった。これは,中日本高 速道路㈱での性能確認試験で実施された定着角度10度 を上回ることとなる。

そこで、カップラー継手部のグラウト充填性能確認モ デルとして、角度 0 度、角度 15 度および、さらに定着角 度の厳しい角度 20 度配置についても試験を実施した。試 験体写真を**写真 3** に示す。

写真3 充填確認試験 試験体

充填確認試験の結果,角度0度,角度15度,角度20 度のいずれの試験体についても,グラウトの充填性能に 問題ないことが確認できた(**写真4**)。また併せて実施し た接続具(1S28.6用 W-C 型接続具)の定着効率について も問題ないことを確認している。これらの性能確認試験 の結果から、カップラー継手を採用するに当たって必要 な性能を確保している事を確認できた。

写真4(1) グラウト充填確認状況

写真 4(2) グラウト充填完了

(2) 2 主版桁の床版付加曲げモーメント

2 主版桁は中間横桁を省略した構造であり, 主桁間の 荷重分配は床版を介して行われる。そのため, 主桁間に 発生したたわみ差により,床版には付加曲げモーメント が発生する。本橋は,2 主版桁として適用最大規模とな る 35 m の支間を有しており,活荷重偏載による主桁間の たわみ差が大きくなることが予想され,主桁間のたわみ 差に起因する床版付加曲げモーメントが大きくなること が懸念された。活荷重偏載による付加曲げモーメントは 道路橋示方書の床版設計では考慮されていないため,主 桁間のたわみ差に起因する床版付加曲げモーメントを床 版設計に反映させることが課題となった。

この課題に対して、5 径間の3 次元 FEM モデル(図7) により、主桁たわみ差に起因する床版付加曲げモーメン トを算出し、床版設計に反映することとした。載荷荷重 は、L 荷重および T 荷重の2 ケースとし、床版たわみ差 が大きくなるように載荷した。

図7 FEM 解析モデル

論文·報告 新名神高速道路 京田辺高架橋の設計

FEM 解析の結果,L 荷重載荷ケースとT 荷重載荷ケース(図8)を比較すると,L荷重載荷ケースの床版たわみ 差が2倍程度大きくなったが(図9),中間床版付け根(設 計断面⁽³⁾)に発生する負の曲げモーメントは同程度で あった(図10)。また,L荷重載荷ケースにおいて,中間 床版付け根(設計断面⑦)に道路橋示方書では考慮され ていない正の曲げモーメントの発生を確認し,床版設計 に反映し,応力照査を行った(**表**2)。

図 9 活荷重偏載時変形図

表 2 応力度結果

		山庄付	相(⑦)	由床付根(13)			
¥	計位置		T W D		中体内极(圆)		
15	히꼬삩		上縁	下縁	上縁	下縁	
検	討モデル	バネモデル					
活荷重断面力		max	26.90		26.90		
(kN	min	-81.6		-81.6			
	死荷重時		1.19	0.25	0.73	0.74	
	制限值(C)	0< <i>σ</i> <13.8				
応力度 (N/mm2)	設計時 (温度時)	max	1.94	-0.52	1.48	-0.03	
(11/11112)		min	-1.14	2.64	-1.60	3.12	
	制限值(B)		-1. 983<	σ<13.8	-1.983< σ<13.8		

PC プレテンション方式多径間連結 T 桁橋区 間の設計

(1) 設計概要

連結桁の設計断面力の算出は,主桁連結前は単純桁, 連結後は鉛直バネを有する弾性支持された連続格子桁モ デルでの解析が一般的である。しかし本橋は,多点固定 の多径間連結構造であるため,クリープ・乾燥収縮およ び温度変化などを拘束することにより生じる不静定力と して大きな軸力が発生する。このため,これらの荷重の 影響を考慮するため,下部工剛性および基礎バネを考慮 した合成バネを用いる骨組み解析を実施した。

さらに, 主桁コンクリートの試験練り時に圧縮強度試 験(JISA1108準拠)および静弾性係数試験(JISA1149 準拠)を行い, 圧縮強度と静弾性係数の発現特性を計測 するとともに, 主桁製作工場の実機練りコンクリートを 用いて圧縮クリープ試験(JISA1157準拠)および乾燥 収縮試験(JISA1129附属書A準拠)を行い, 実際に使 用するコンクリートのクリープ係数および乾燥収縮度を 測定した。詳細設計では, 測定値から得られた材料特性 を反映させた解析により, 不静定力を適切に考慮した応 力照査を実施し安全性の確認を行った。図11 に設計概要 図を示す。

図 11 設計概要図

(2) 軸力の作用する連結部の設計

主桁連結部(図12)は、左右の主桁を横桁を介して確 実に結合し、安全性および耐久性が確保できる構造とし なければならない。本橋の連結部は、近接2点支承部にメ ナーゼヒンジ鉄筋(写真5)を用いた多点固定構造²⁾と なっているため、不静定断面力が非常に大きな影響を連 結部に与える。一般的には、プレキャスト桁架設方式の 連結部は、RC連結構造とする場合が多いが、先に述べた 理由からRC連結構造としての成立性が検討課題となった。

詳細設計においては,連結部の設計方針を図13に示す フローに基づき検討を行い,本橋の連結部では,連結横 桁の橋軸方向ヘプレストレスを導入するPRC構造を採用 することとした。PRC構造としての制御方法は,死荷重+ 温度時で方法B(ひび割れ発生限界),設計荷重時および 設計荷重+温度時で方法A(ひび割れ幅制御)とした。

図 12 連結部構造概要図

写真5 連結部メナーゼヒンジ鉄筋

図 13 連結部設計フロー

連結部のプレストレス導入は,連結横桁の長さが 1.720mと短いことから,一般的なくさび定着工法では有 効伝達長が長くなるため着目断面にプレストレスが十分 に伝達しない可能性があるので,NAPP工法³⁾を採用した。

NAPP 工法とは、NAPP ユニットと呼ばれる予め緊張さ れた状態の中空 PC 鋼棒を型枠内の所定位置に配置し、コ ンクリートの打設、硬化後に緊張力を解放して、コンク リート部材へプレストレス力を導入するプレテンション 方式による PC 工法の一つである。プレストレス力の導入 は、施工現場において電動レンチを用いた専用の解放機 器により容易に行うことができ、施工現場での緊張管理 は不要となる。NAPP 工法の構造および NAPP 鋼棒を図14、 写真6に示す。NAPP 工法ならば、有効伝達長を8¢程度 に抑えられるため、着目断面に確実にプレストレスが伝 達する設計とすることができ、桁下空間での狭い緊張作 業に対し、作業が容易な点からも NAPP 工法は有効である。

また,連結部は,横桁横締めとして橋軸直角方向にも PC 鋼材を配置するほか,メナーゼヒンジ鉄筋および PRC 構造としての連結部曲げひび割れ鉄筋も配置するため, NAPP 鋼棒の配置はこれらの鋼材との取り合いも踏まえ て設定した。図 15 に連結部鋼材配置図,写真7に連結部 施工状況を示す。

図 14 NAPP 工法構造図

写真6 NAPP 鋼棒

図 15 連結部鋼材配置図

写真7 連結部施工状況

(3) 繊維補強コンクリートの適用

交差道路部の剥落防止対策⁴は,一般的にはアラミド 繊維などを主材料とする連続繊維シートタイプのものを コンクリート打設前に型枠に設置する。しかし,本橋は 部材断面の小さいプレテンション桁で,型枠の形状が複 雑でかぶりも小さいため,型枠に連続繊維シートを設置 するのは,コンクリートの充填性など施工性の観点から 合理的ではなかった。そのため,本橋では剥落防止対策 として,繊維補強コンクリートを採用することとした。 これは,ポリプロピレン短繊維をコンクリートに混ぜる ことで,コンクリート自体に剥落防止性能を付与したも のであり,プレテンションT桁の形状にも適用は可能で あった。

採用に当たっては性能確認試験として、繊維補強コン クリートにバルチップ MK を使用した試験体による押し 抜き試験を実施した。押し抜き試験結果(表 3)は判定 基準値が 1.5kN以上に対して 3.4kN と十分な結果となっ た。押し抜き試験状況を写真8に、バルチップ MK の物性 を表4に、さらにバルチップ材(生材、練り混ぜ状態、 主桁製作後)を写真9に示す。

配合種別 (コンクリートの呼び方)	短繊維 補強材料名	繊維混入率	供試体 番 号	コ ア 削孔長	変位 10m 最大 (k	m 以上の 荷重 N)	荷重 Pi 時 の 変 位
				(mm)	各值:Pi	平均值:P	(mm)
			40 No.3	160	2.84		10.38
P 6 - 4 (50-18-20H+F)	^゙ <i>ル</i> チップ MK	0.4vol.% (3.64kg/m³)	40 No.5	160	3.91	3.40	10.29
			40 No.6	160	3.46		10.47

写真8 押し抜き試験状況

論文·報告 新名神高速道路 京田辺高架橋の設計

表 4 バルチップ MK 物性

標準添加量(コンクリート1m ³ 当り)					
繊維混入率	0.4 vol% (3.64 kg/m ³)				
物性等	3,500dt - 30mm				
素材	ポリプロピレン				
密度	0.91g/cm ³				
公称繊維径	0.7mm				
繊維長	30mm				
引張強度	500N/mm ²				
融点	160~170℃				

写真9(1) バルチップMK(生材)

写真 9(2) バルチップ MK (練り混ぜ状態)

写真 9(2) バルチップ MK (主桁製作後)

5. おわりに

以上,京田辺高架橋の混合桁区間およびプレテンション多径間連結 T 桁橋区間について,詳細設計で検討した 事項について述べた。

本橋のように横断勾配が変化する場合の移動支保工 施工において,支承配置や配筋計画には留意が必要であ る。また2主版桁の設計において,主桁たわみ差による 床版付加断面力を考慮することは,適用支間が限界とな る場合には,有効な設計手法となり得る。

次に、本橋で採用した PRC 連結構造は、多点固定多径 間連結構造の連結部において、安全性および耐久性を確 保できる有効な方法であった。プレテンション桁を活用 することで高品質、高耐久性などの利点も最大限に生か すことができた。さらにプレテンション T 桁の剥落防止 対策としては、繊維補強コンクリートの適用が施工性お よび剥落防止対策の性能確保の観点から合理的であった。

京田辺高架橋は 2015 年 6 月現在,移動支保工区間,プ レテン区間,固定支保工区間の全橋梁が同時に稼働中で あり,最盛期を迎えている(写真 10)。

本稿が類似構造の参考となれば幸いである。

写真 10(1) 移動支保工施工状況

写真 10(2) プレテン T 桁橋 (門型クレーン架設)施工状況

参考文献

黒木,梅田,花田,和田:下原川橋の設計・施工報告,
 第21回プレストレストコンクリートの発展に関するシンポジウム論文集, pp.485-488, 2012.10.

 野田,三田,大久保:メナーゼヒンジを有する PC プレテンション方式 13 径間連結 T 桁橋の連結部構造,土 木学会第 70 回年次学術講演会(投稿中), 2015.9.

3) NAPP 工法技術研究会: NAPP 工法設計・施工マニュ アル, 2014.7.

4) 西日本高速道路㈱:設計要領第二集 橋梁建設編, 2012.7.