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1. Introduction

The cable-stayed girder bridge has been con-
siderably developed in recent years, and the number
of this type of structures built in Japan has rapidly in-
creased. For the wind resistant design, the investiga-
tion based on the wind-tunnel test is frequently
performed in this country.

F. Leonhardt et al.l):2) performed the experi-
ments using models and several actual bridges, and
pointed out that cable-stayed girder bridges would
have high dynamic stability against vertical bending
oscillations of main girders by means of the system
damping. However, the adduced cause seems to be
merely a conjecture. In addition, judging from the
results of measurement of many actual bridges
built in this country, the system damping effects
cannot be considered as characteristics common to
all of cable-stayed girder bridges.

On the contrary, the authors3)-5) previously
defined that a governing cause of the system damping
was the beating phenomenon of free vibration terms
with respect to two kinds of similarly coupled natural
vibration modes (from another angle, a main girder
and cables exchanged their vibration energy), when
frequencies of a main girder and cables as component

structures were close to each other. Namely, it was
defined that the system damping would occur when
transverse local vibration characteristics of particular
cables satisfy the requirements of the so-called
internal resonance. Moreover, in dynamic response of
cable-stayed girder bridges to moving design live
loads, the authors reported that the system damping
due to the defined cause would have good effects of
reducing the dynamic amplification factors and of
giving considerable attenuation of residual free
vibrations.

Therefore, it can be positively forecasted that the
system damping effects due to the defined cause on
wind-induced vibrations may not be ignored, when
the aerodynamic stability of cable-stayed girder
bridges is discussed. However, in order to examine
the effects, it becomes necessary to newly derive an
analysis technique of time series response by con-
sidering the internal resonance. Because it is difficult
to examine, directly by the wind-tunnel test on so-
called sectional models, vibrations with respect to
two kinds of similarly coupled natural vibration
modes which are excited almost at the same time
since their natural. frequencies are close to each
other. Also, in the previous case of dynamic response
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to moving loads, the structural damping was neglect-
ed at the safety side and thus the conventional
technique could be applied. But, in this case, it
become necessary to evaluate the aerodynamic
damping as well as the structural damping, differently
from the conventional technique, in response to two
kinds of coupled modes.

Y. Kubo, M. Ito and T. Miyata6) performed time
series response analyses for flutters by applying the
strip theory using unsteady aerodynamic forces
obtained from the sectional model test, and reported
that the results coincide relatively well with V-4
curve (wind velocity — amplitude curve) obtained
from the full model test. Therefore, when examining
the system damping effects, it is considered to be
very valid not only for flutters but also for aeolian
oscillations to perform time series response analyses
of completed structure models by using unsteady
aerodynamic coefficients obtained from the sectional
model test.

On the basis of discussions indicated above, now
the authors will pay attention to bending aeolian
oscillations among various kinds of wind-induced
vibrations of cable-stayed girder bridges. And, in this
paper, an analysis technique of time series response
will be proposed taking into consideration the
internal resonance. Then, in order to confirm justifi-
cation for the proposed technique and the defined
cause, action of cable as a kind of damped absorber
will be examined by using solution of the complex
eigenvalue problem for a simple model simulating
cable-stayed girder bridges. In addition, for an actual
design example of multi-cable-stayed girder bridges,
time series response analyses will be performed using
unsteady aerodynamic coefficients obtained from
results of the spring-mounted model test, and it will
be tried to obtain basic wind resistant design data
concerning the system damping effects due to the
defined cause.

2. Analysis Technique of Time Series Response

by Considering Internal Resonance

In this chapter, an analysis technique of time
series response of bending aeolian oscillations on
cable-stayed girder bridges will be derived taking into

consideration the internal resonance.

This analysis technique is based on the several
common assumptions that acting wind has a constant
wind velocity and a smooth flow without turbulence,
as done in the wind engineering, and that vibration
modes during bending aeolian oscillations are satisfied
with the assumption of semi-rigid modes, in addition
to the following ones:

i) Unsteady aerodynamic forces, obtained from
the sectional model test, will be applied but the
imaginary part in phase with velocity is predominant
and the real part proportional to displacement can be
neglected.

ii) Unsteady aerodynamic forces will act in accord-
ance with the strip theory but forces acting on a main
girder are predominant and ones acting on cables can
be neglected.

At first, to an analytical model of cable-stayed
girder bridges with cables replaced by links for
considering their transverse local vibrations, the
linearlized equation of motion can be expressed by

[MH{y}H+ [CHy}+ [KYp}= [FrI} 1

where [M] is the mass matrix, and [K] is the tangenti-
al stiffness matrix in a static equilibrium state. Also,
[C] is the damping matrix, and [Fj] is the unsteady
aerodynamic damping matrix which will be described
later.

The following equation contains no terms pro-
portional to velocity:

[M}{y}+ [KHy}= O . )

By performing the natural vibration analysis for the
above equation, two kinds of the similarly coupled
natural vibration modes of i-th and j-th orders,
{®;} and {<I>j}, and the natural circular frequencies,
w; and w; which are close to each other, can be
obtained due to the internal resonace. If the follow-
ing normalization has been performed:

@l M@} =1 (k=i ), 3)
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Eq.(1) can be transformed into the following 2nd
order differential equation relative to the generalized
coordinates, g; and a;:

g * My g+ 0 = (2 TIF (@R
(k=1,7) 4

where h; and h; are the structural damping constants.
But, being different from the conventional cases
where only one kind of natural vibration modes is
considered, values assumed in the wind-tunnel test
cannot be used as these constants. Moreover, these
constants must be evaluated by taking account of
degree of the internal resonance.

When hg and h,,, Wg and w,, [Cg] and [Cc], and
{CIDg} and {®} are respectively the structural damp-
ing constants, the natural circular frequencies, the
damping matrices and the normalized natural vibra-
tion modes of the analytical model of cable-stayed
girder bridges neglecting transverse local vibrations of
cables and also the model for transverse vibrations of
cables, the following equations can be made:

2hyen =L @) T[cq_ (@

(€], [0T[(®gg)

(01, 1C, %y )

(k=1i7j)

2hgwo, =121 [Col{@ ) 2,0, = @ 71c 112,
)

Since the above equations and the fact that {®; }and
{dDj} are similar to each other, the authors propose

= [y gt T 10g 71 {

here the application of values evaluated by the follow-

ing approximate expression:
= T T
Zhgwy = 2how, [{‘I’k,g} {q’k,g} 1/ [{<I>g} {¢I>g}]

+ 2w, [0 M 0y 311 {2 THe, )]
(k=i,j)  (6)

where {<I>k c} expresses only the transverse local

vibration component of the cables in {<I>k}, and
{o, g} expresses { ®;} from which this component

has been deducted. Justification for evaluating the
structural damping constants by using Eq.(6) will be
confirmed in the next chapter.

Hence, by giving the unsteady aerodynamic damp-
ing matrix [Fy], Eq.(4) can be expressed definitively.
This matrix can be calculated by using the unsteady
aerodynamic lift coefficient Cy,; obtained from
results of the sectional model test with the dimen-
tionless amplitude Z, and the reduced wind velocity
U, at each angle of attack. However, differently
from the conventional cases, it is required to give
U, and Z, corresponding to two kinds of the natural
circular frequencies close to each other and the
similarly coupled natural vibration modes. These
values may be computed as follows. Namely, the
reduced wind velocity U, may be given corresponding
to the average value (wi+w]-)/2. On the other hand,
the dimensionless amplitude Z, may be given cor-
responding to the equivalent amplitude vector {Z }
which can be expressed by the equation shown below
in each time step.

. q;{®} + q;{®]
7 = iy + agny 1ot

Q)

Therefore, by integrating Eq.(4) in succession with
small interval and applying the mode superposition
method, time series response analyses of bending
acolian oscillations by considering the internal
resonance can be performed.

3. Justification of Analysis Technique and Cable

Action as Damped Absorber

In this Chapter, in order to confirm justification
for evaluating the structural damping constants by
using Eq. (6), cable action as a kind of damped
absorber’) will be examined by using solution of the
complex eigenvalue problem concerning a simple
simulation model of cable-stayed girder bridges.
Moreover, the total damping constant to each mode,
including the aerodynamic damping, will be concretely
evaluated, and compared with the one in the ordinary
case.
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3—1 Justification of Analysis Technique

By substituting reasonable values of 4, and 4, into
Eq. (6), the following fact will be known easily.
Namely, it will be known that the sum of h; and h]-
corresponding to the coupled natural vibration modes
due to the internal resonance is equal to the sum of
hg and h,. This fact apparently means that the
structural damping is added to the vibration of the
main girder shaped by the two kinds of the similarly
coupled natural vibration modes which are excited
almost at the same time by forces acting on the main
girder, when the remarkable internal resonance
occurs. And, by considering that a cable will act as a
kind of damped absorber shown in Fig.1, this fact
can be estimated as explained below.
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Fig.1 Damped Absorber

Fig.2 shows the simple simulation model of cable-
stayed girder bridges being considered. For the
purpose of simplification, the horizontal displace-
ment of the free end of the main girder is ignored,
and then the vibratory system with 2-degree of
freedom relative to the displacement x_ in the verti-

cal direction and the one X, in the normal direction

at the central point of the cable is considered. In this
figure, ¢ and c, are the structural damping coeffi-
cients, and My and m,, are the mass of the main girder
and the cable respectively.

Fig.2 Simulation Model of Cable-Stayed Beams

The equation of motion of the free damping vibra-
tion may be given by the following equation:

mgtm,/2 OngJ +[cg Ong} .
L 0 mc .7'50 0 cc xC

el
k. k x.l = Lo ®)

“feg Mec c

where kgg and kcc’
diagonal elements and the non-diagonal ones of the

and kgc and kcg express the

stiffness matrix respectively, but actual expressions
for these elements are omitted here.

If the model as shown in Fig.3, in which the
transverse vibration of the cable is neglected, is
presumed here, the equation of motion shown below
is given from Eq. (8).

(mg +m,/2) 5c'g + cg)'cg + kggxg =0 ©)

Then, when w, and &, are respectively the natural
circular frequency of the model of 1-degree of
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freedom system and the structural damping constant,
the following equation is obtained:

Cg = Z(mg + mc/Z)hgwg

kge = (mg + mc/Z)o.Jg2 (10)

2
Z

Fig.3 Model in which Transverse Vibration
of Cable is Neglected

On the other hand, if the model with only the
transverse vibration of the cable as shown in Fig.4 is
presumed, the equation of motion show below is
given from Eq. (8) in the same way.

meXe tegkethppx, =0 (11)

Then, when w, and &, are respectively the natural
circular frequency of this model of 1-degree of free-
dom system and the structural damping constant,
the following equation is obtained:

Ce =2mchc°"c }

(12)

Fig.4 Model with Only Transverse Local
Vibration of Cable

As an extreme case where the internal resonance
occurs, the following assumption is made here:

wg=wc=c_o' (13)

Then, by substituting Egs. (10), (12), (13) and the
equation shown below as the conventional approach
into Eq. (8)

- iQt
xg Xge }
x, =X el ) (14)

the following equation is obtained:

r 2 = —2
o -Q +21hgw$2+w kgc/(mg+mc/2) Xg
209: —OL—2
L kcg/mc —Q*42ih Q] (X,
Y
L0 (15)

From the condition of having significant solutions of
the above equation with respect to an unknown
quantity £ can be derived as follows:

QF —2i(hg+h YBQ —{2Hgth, ) —(hg—hc)2}52 9

#2i(hyh )i QT - = (16)
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Where,

a= {kgc/(mg+ m./2)} (kcg/mc)' 17
Also, by using the following condition:

0< hg <1.0 }

0<h,<10 7, (18)

Eq. (16) can be transformed into the equation shown

below after neglecting its underlined small term.

hgthe
2

_ hgthe
107 —2i (£,5)B0 (@ - QN Q221 (-5—)ER
—(@+a)}=0
(19)

Hence, two sets of the conjugate complex roots £2;
and §2, can be obtained as follows:

hgth,
2

hgth
nl:i(f;f)c‘ot\/t;{l—( )’} -

Chgth, [ hyth,
Qzl—:z(—g—z— Yoty @? {]—(—gz——)2 } +o
(20)

Moreover, the coupling ratios (X /X, g} 7 and (X /X g)Z
in the vibration mode corresponding to each of £2;
and Q, can be obtained from Eq. (15) as follows:

A SRR b O O ———
cd<g'l g2 kgc/(mg+mc/2)

_ mg+mc/2)/kgc
= /E e (1)

From Eq.(20), it will be known that the sum of the
imaginary parts of ; and §2, becomes i(hg +h C)E.
This means the confirmation of the fact that cable
action as a kind of damped absorber gives the effects
of varying the structural damping to the vibration of
the main girder shaped by the two kinds of the similar-

ly coupled natural vibration modes, which have the
natural circular frequencies w;=+/ @’ —a and
wy =/ @?% + & close to each other and are excited
almost at the same time by forces acting on the main
girder. Namely, this confirmation can be easily done
because the conjugate complex root Qg is given by
the following equation when the transverse vibration
of the cable is neglected:

Q=i £ @ (1 - hy") (22)

While, from Eq.(21), it will be known that the
coupling ratio X C/X o is depending on the mass ratio
mc/mg and thus the mass ratio greater than a pre-
determined value will become necessary.

Therefore, it can be judged from the above that
justification for evaluating the structural damping
constants by Eq. (6) has been confirmed, as one of
the features of the time series response analysis
technique for bending aeolian oscillations by con-
sidering the internal resonance.

3—2 Total Damping Constant Including
Aerodynamic Damping
From Eq.21), the normalized natural vibration
modes, {® ]} and {<I>2}, can be obtained as follows:

(@) =V1/{20mgtm )}, ~/1/@m N T

{@}=[V1/{20mgtm /2)}, +/1/Cm N T | (23)

Hence, by paying attention to bending aeolian oscil-
lations due to wind forces acting on the main girder,
the following equation may be expressed for each
time step:

{@ Y IFe p={e  F(®))=1/ Zl{q’g}T[F g
(24)

where [F}] is the unsteady aerodynamic damping
matrix which was described in the above chapter, and
{<I>g}= [v/ 1/(mg +m,/2), 0] T is the normalized
natural vibration mode when the transverse vibration
of the cable is neglected.
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Therefore, it will be known that the following
condition can be easily satisfied, and that the total
damping constant to each mode is increased as
compared with the case where the internal resonance
hardly occurs:

_p * _h *
2{(hgth )2} —hg*/2> 2oy

2 (hgth,)/2}wy—hy*/2 > 2hgtog—ho* 25)

where hg*={ <I>g}T[F 7l {<I>g}. Consequently, it can be
judged that the defined cause will be one of the
governing factors of the system damping of cable-
stayed girder bridge.

4. Time Series Response Analyses of Multi-Cable-
Stayed Girder Bridges
In this chapter, time series response analyses with
respect to an actual design example will be performed
using unsteady aerodynamic coefficients obtained
from the spring-mounted model test, and then it

850m

[ 55.000 10@3 .ooo/

will be tried to obtain basic data for the wind resist-
ant design related to the system damping effects on
bending aeolian oscillations of cable-stayed girder
bridges.

Also, for the purpose of comparison, calculations
will be performed by changing characteristics of
transverse vibrations of particular cables. However,
since the adjustment of cable tension is not always
easy because of the connection with the static design,
the increment of unit weight per length of cable,
that is, the additional mass will be considered here to
correspond to actual problems.

4—1 Actual Example and Analysis Procedure

An actual design example to be considered is a
3-span multi-cable-stayed girder bridge 8) with a
center span of 420 m, and its skeleton and sectional
values are as shown in Fig.5 and Table 1. However,
the dimensions for the main girder were obtained
after converting truss sections into beam sections.

H
L

10 @ 12.350 = 125.500 5 @12.300 16 @ 12.350 = 197.600
=
12.400 12.400
1850 m 4200 m

Fig.5 Multi-Cable-Stayed Girder Bridge
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Table 1 Sectional Values

AREA INERTIA | Y.MODULUS
(m?) (m*) (t/m?)

1.0635-1.5747 | 40.538—65.585 | 21000000.0

GIRDER

TOWER 1.4780-2.2520 | 4.568— 9.054 | 21000000.0

CABLE 0.0225-0.0419 0.0 20500000.0

SPRING
(length:3.0m) 1.0 0.0 36000.0

In the natural vibration analysis, cable replaced by
links with required non-stressed shapes will be
considered, and the equation of motion linearized by
the tangential stiffness matrix19) based on the
finite displacement theory under static dead load will
be solved by Sturm Sequence Method 1),

Also, in the time series response analysis, the sym-
metric 1st order vibration mode of the main girder
will be specifically taken into account, and the
analysis will be made by the mode superposition
method applying Newmark’s f-Method (8=1/6) 12) o
numerical integration method. In this case, the
small duration of time step will be 1/20 of the
natural vibration period being considered and, if the
two kinds of the similary coupled natural vibrations
modes are to be considered by taking account of the
internal resonance, then 1/20 of the average period

will be used.

4—2 Calculation Model and Natural Vibration
Characteristics
Table 2 shows the natural vibration period when
all cables at all levels are considered to be the tension
members and the transverse vibration is neglected.
On the other hand, Table 3 shows characteristics of
transverse vibration of cables as chords at all levels.

Table 2 Natural Periods by Neglecting Transverse
Vibrations of Cables

ORDER|PERIOD (sec) MODE
1st 2.437 Center Span — Symmetric 1st (vertical)
2nd 2.406 Center Span — Symmetric 1st (longitu.)
3rd 1.375 Center Span — Asymmetric 1st (vertical)
4th 0.910 Side Span — Symmetric 1st (vertical)
Sth 0.738 Side Span — Asymmetric 1st (vertical)

Table 3 Transverse Local Vibration Characteristics

of Cables
AREA |DENSITY |TENSION|PERIOD
(m?) (t/m?) () (sec)
11th 0.03586 11.0 1507. 1.953
10 Upper | 0.03586| 11.0 1490. 1.866
9 0.03186 11.0 1188. 1.655
8 0.03186| 11.0 981. 1.536
7 0.02848 | 11.0 9717. 1.481
CENTER | 6 0.02248 | 11.0 774. 1.355
SPAN 5 0.02248 | 11.0 770. 1.228
4 0.02248 | 11.0 760. 1.106
3 0.02248 11.0 754. 0.984
2 Lower | 0.02848 | 11.0 1124. 0.887
1st 0.02848 | 11.0 1243. 0.763
11th 0.04186 11.0 1544, 2.132
10 Upper | 0.04186 11.0 1531. 2.003
9 0.03972| 11.0 1120. 1.846
8 0.03186 | 11.0 1112. 1.590
7 0.02248 | 11.0 807. 1.431
SIDE 6 0.02248 | 11.0 800. 1.312
SPAN | 5 0.02248 | 11.0 795. 1.192
4 0.02248 181.0 784. 1.076
3 0.02248 | 11.0 775. 0.691
2 Lower | 0.02848 | 11.0 1151. 0.881
1st 0.02848 11.0 1267. 0.762

By referring to these tables, four kinds of calcula-
tion models shown in Table 4 will be used here. That
is, the specifications of actual design examples of
bridges will be used as they are for MODEL-1 and
MODEL-1L, which correspond to the transverse vibra-
tion being neglected and considered. MODEL-2L
corresponds to the case where the requirements
for the internal resonance are satisfied by adding
the mass to the four uppermost cables at 11th level
and making 1Ist order natural vibration period of
the cables as chords very close to that of the lowest
order shown in Table 2. And MODEL-3L corresponds
to the case where the same mass is added also to
four cables at 10th level in addition to the 11th
level.

Table 4 Calculation Models

DENSITY OF CABLE  (t/m?)
1st—9th 10th 11th
CENTER(SIDE (CENTER|SIDE
SPAN [SPAN [SPAN [SPAN
MODEL-1
(AXIAL MEMBER) 11.000 11.000 11.000
MODEL-1L
(LINKING CABLE) 11.000 11.000 11.000
MODEL-2L
(LINKING CABLE) 11.000 11.000 16.192 {14.025
MODEL-3L
(LINKING CABLE) 11.000 | 18.282 (15.873| 16.192 |14.025
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Increment of the unit weight per length of cable
shown in Table 4, that is, the ratio of added mass to
the standard value is 1.275 to 1.662. And it seems
to be actually possible to satisfy the requirements
for internal resonance by adjusting the thickness of
grouting in the case of HiAm-anchor cables or by
adjusting the weight of band for binding strands in
the case of other cables.

Therefore, the natural vibration modes and natural
circular frequencies concerning the 1st order sym-
metric vibration of the main girder are shown in Fig.6
with respect to these four kinds of calculation
models. That is, the mode superposition method will
be applied by paying attention to the natural vibra-
tion modes shown in this figure. However, in the
case of MODEL-1L, the internal resonance hardly
occurs even if the transverse vibration of the cables
is taken into accout. Natural vibration mode in the
10th order shown in parenthesis will not be excited
by the unsteady aerodynamic force acting on the
main girder but is indicated there as reference.

MODEL-1

rad/sec

N

l (wy0=3.099
rad/sec)

MODEL-2L

w,=2.494
rad/sec

rad/sec

MODEL-3L 1st order

1 wi=2.469
rad/sec

rad/sec

Fig.6 Natural Vibration Modes and Natural
Circular Frequencies

4-3 Structural Damping Constants and Unsteady
Aerodynamic Forces

By considering four cases shown in Table 5, the
values of structural damping constants 4; and h]- cor-
responding to each mode in the time series response
analysis were calculated. That is, for CASE-1, -2, -3
and -4, a value of 0.03 was used as the structural
logarithmic decrement &, corresponding to the
models for which the transverse vibration of cables
was neglected, and the value of 5, corresponding to
the models with only the transverse vibration of
cables was changed from 0.0 to 0.0075, to 0.0150
and to 0.0300.

Table 5 Structural Damping Constants Corresponding

to Each Mode
CASE ASSUMED VALUE OF| MODEL DAMPING CONSTANT TO
LOGARITHMIC EACH MODE
DECREMENT hi hj Total
Bgzzng §=2mh, i-th j-th
MODEL-IL | 1st|0.00477| — - 0.00477
CASE-1 0.03 0.0
MODEL-3L | 1st]0.00173| 10th| 0.00304| 0.00477
MODEL-1L | 1st]0.00477| — — 0.00477
CASE-2 0.03 0.0075
MODEL-3L | 15t [0.00245| 10th| 0.00352| 0.00597
MODEL-IL | 15.0.00477| — - 0.00477
CASE-3 0.03 0.0150
MODEL-3L | 1st[0.00317| 10th| 0.00399( 0.00716
MODEL-1 1st]0.00477| — — 0.00477
MODEL-1L | 15t [0.00477| — - 0.00477
CASE-4 0.03 0.0300
MODEL-2L | 1st [0.00499| 6th | 0.00456| 0.00955
MODEL-3L | 15t [0.00458| 10th| 0.00497| 0.00955

On the other hand, as the unsteady aerodynamic
lift coefficient, Cy 7y, a value corresponding to the
reduced wind velocity U,=1.992 shown in Fig.7 is
applied, which was formulated by the least square
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method by using V-A-8 curve (wind velocity-
amplitude - logarithmic decrement curve)9) obtained CuziliZol®)
from the results of wind tunnel test on the spring-

O MEASURED VALUE

mounted model with truss girder in the case of an "
angle of attack of 5-degrees. Ratio of Cy to CuziltZol®) - tine
dimensionless amplitude Z, is also shown in Fig.7 st ° !
for reference. o
s o s

4—4 Calculated Results and Its Consideration =

Part of calculated results of the time series at 4
response analysis is shown in Fig.8. Fig.8 shows the
envelope of the response amplitude from the initial ! Cuartne 2
development stage to steady state of the vertical
displacement at % point of uppermost cable at % e : : : : " -

point of center span of the main girder, when the
initial value of vertical displacement amplitude at
% point of the center span of the main girder is
0.150 m and periodicity is 100 (number of time steps

is 2000).
MAIN GIRDER
(% point) .
025 ,,_,'/. . ,\\.\ . A
o X
0.20} Y g fo~\y
$ /’\\ /,/_\\\ ’I/’\\ / ,‘\‘\‘ :I/ \\‘ !
//\‘\ Y 1, \ 1
015k . /

0.10

0.05

0.0

—0.05

-0.10
—0.15[7,

—0.20F
—02st

------------- MODEL-1 (CASE-4), MODEL-1L (CASE-1,2,3,4) ——=-- MODEL-3L (CASE-1)

—— - — MODEL-3L (CASE-2)

————— MODEL-2L (CASE-4) ———— MODEL-3L (CASE-3)

MODEL-3L (CASE4)

UPPERMOST CABLE
(% point) =5 )
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From this figure, the following consideration can
be made: There is almost no difference in response
amplitude of bending aeolian oscillations of main
girder between MODEL-1 and MODEL-1L. On the
other hand, it will be known that, in the case of
MODEL-2L and -3L, the response amplitude is
gradually decreased periodically. And in the case of
MODEL-3L, the response amplitude of vibration of
the cable becomes smaller compared to MODEL-2L.

In the case of MODEL-3L, it will be known that the
steady-state response amplitude slightly increases in
CASE-1 where cable action as a kind of damped
absorber is neglected but becomes considerably small
in CASE-2 and -3 compared to MODEL-1L. 1t will be
also known that, in CASE-4, the development of
aeolian oscillations is restricted in both MODEL-2L
and -3L. And in MODEL-3L, the response amplitude
of vibration of cable decreases as the cable action as a
kind of damped absorber is enhanced from CASE-1
to CASE-4.

Therefore, from the results of analysis and its
consideration explained above, it seems to be very
worthwhile in the wind resistant design to consider
the system damping effects on the bending aeolian
oscillations of the cable-stayed girder bridges which
have been definitively pointed out by the analysis
technique derived.

5. Conclusions
From the afore-mentioned results, the following

conclusions 13),14)

may be drawn:

(1) It is positively predictable that the review of the
system damping effects due to the defined cause will
become not negligible in the wind resistant design of
cable-stayed girder bridges. And, for this review, the
proposed analysis technique of time series response of
bending aeolian oscillations is effective, which takes
account of the internal resonance and uses unsteady
aerodynamic coefficients obtained from results of
the wind-tunnel test on sectional models.

(2) By satisfying the requirements for the internal
resonance by adjusting distributed mass of particular
cables of multi-cable-stayed girder bridges, the system
damping effects are able to considerably reduce the
steady state amplitude in bending aeolian oscillations

of main girders and are effective for improving the
aerodynamic stability.

(3) The system damping effects can be also effec-
tively utilized when it becomes necessary to review the
fatigue strength of cable-stayed girder bridges con-
cerning bending aeolian oscillations, because the steady
state amplitude of main girders is slowly and repeat-
edly decreased at the period of the beating phenome-
non.

(4) By enhancing the action of cables as a kind of
damped absorber by using cables with higher damping
capacities, it is not difficult to even restrict the occur-
rence of bending aeolian oscillations of main girders
of cable-stayed girder bridges by means of the system
damping effects.

Though the attention is concentrated only upon
bending aeolian oscillations among various kinds of
wind-induced vibrations in this paper, it seems to be
necessary to review the system damping effects
peculiar to cable-stayed girder bridges on torsional
aeolian oscillations and also on flutters as future
research themes.

Finally, the authors would like to express the
deepest appreciation to professor M. Ito (University
of Tokyo) and to lecturer H. Yamaguchi (Saitama
University) for their valuable advices during this
study, and to Mr.M.Yasuda and Dr.S. Narui
(Honshu-Shikoku Bridge Authority) for their valuable
data given to the authors.
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