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Rotor Blade Torsional Load Identification
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1. Notation
e distance between mass and elastic axis, positive
when mass lies ahead of elastic axis

e, distance between area centroid of tensile member
and elastic axis, positive when centroid lies ahead

eo distance at root between elastic axis and axis
about which blade is rotating, positive when elastic
axis lies ahead

GJ torsional rigidity

I, I. flapwise and chordwise principal mass
moments of inertia, respectively

I, torsional mass moment of inertia
k2, polar radius of gyration

k, control system stiffness

¢ length of blade segment

My, M, structural and external moment about x axis,
respectively

r distance of blade element mass from the center of
rotation

T centrifugal tension

X, Y, Z stationary shaft coordinate system or rotat-
ing hub coordinate system

76 JIIE#E#R Vol.16 1997

X, v, z rotating blade coordinate system

7, & direction of the major and minor principal axes,
respectively

A6 built-in twist angle of the blade segment

A¢ change in torsional displacement along blade
segment, £

u rotor advance ratio, Vcosa/QR

6 pitch angle of the blade section, positive when lead-
ing edge is up

¢ torsional displacement about x axis, positive when
leading edge is up

Q rotor rotational speed
subscripts and superscripts

n number of blade stations and elements
) d¥( )/dt?
(r d( )/dr

2. Introduction

A rotor blade can experience large variations in
aerodynamic pitching moment along the blade span
during its rotation around the rotor’s azimuth. The
moments are highly motion dependent and, among
other parameters, depend upon the coupled blade



dynamic response and the unsteadiness of the air flow.
These moments directly influence the pitch link loads,
the overall performance of the rotor, and are strongly
governed by blade stall and compressibility effects.
For these compelling reasons, to understand and accu-
rately determine these moments has long been a desire
and worthy goal of the rotorcraft engineer to bring
about a successful rotor design. In response, the rotor-
craft industry has focused a great amount of its
attention on these physical phenomena experienced by
the blade, i.e. dynamic blade stall, as evidenced by the
large number of research works available in the litera-
ture. In the literature, efforts have been made to
understand the nonlinearity of the aerodynamic forces
and the wake induced inflow that governs them.

While much work has been done, there is still
uncertainty in the results and the methods of predic-
tion. To reexamine the determination of rotor loads, a
second method, that of identification is available to
determine rotor blade steady and unsteady loads.
Though it has not received much attention until
recently because of the lack of sufficient flight test
data, a few researchers since the 1950’s have explored
this approach as a way to determine rotor loads. This
approach, in recent works, has shown great promise in
the accurate determination of rotor blade out-of-plane
and in-plane airloads, i.e. References [1, 2, 3]. In
the prediction method, noted as the “direct” problem,
the airloads are “known” and the blade response is
unknown. Conversely, in the identification method or
“inverse” problem, the blade response is known and
the airloads are unknown.

3. Identification Methodology

Until recently, rotor load identification had focused
on the flapwise case only and was based on modal
superposition. However, as discussed in Ref. [3] for
coupled flap-lag motion, a new approach, which em-
ployed the Mykelstad method for the identification of
blade loads, had been developed and shown to be much
more robust than the modal method. The solution
process is based on the “Inverse Transfer Matrix
Method” (ITMM) and the equations of motion, based
on Reference [4], were developed using the force
analysis method. To extend the ITMM) approach, the
Holzer method, Reference [5], is now employed for
the identification of the blade spanwise torsional
moments. The force analysis method uses torsional
moments obtained from experimental data in conjunc-
tion with an equilibrium analysis of the aerodynamic
and inertial torsion moments to obtain the blade
aerodynamic pitching moments (i.e. external
moments). The identification methodology then, in
this paper, is an approach to determine blade torsion

response and external moments from measured struc-
tural response data, such as measured strains at spe-
cific radial stations on the blade, local rotational
accelerations, and/or collective pitch angle measured
at the blade root during testing. From the identified
torsional loads, the pitch link loads can then be deter-
mined. Figure 1. depicts the process for the identifi-
cation of torsion loads.

Measured Response Data

Determine Torsion Moment Distribution

Determine Displacements

Determine Aerodynamic Pitching Moment
on the Blade and Pitch Link Loads

Fig. | Rotor Blade Load Identification
Using Matrix Transfer Method

4. Torsion Dynamic Model

The hub plane coordinate system is used in the
analysis and is represented in Figure 2. The pitch
angle # and elastic torsional displacement ¢ are
defined with respect to the hub plane. The model
accommodates mass centroid and area centroid axes
offsets from the elastic axis which are defined in
Figure 3. Also incorporated into the model are the
provisions for a torque offset, variable pretwist and
nonuniform mass and stiffness section properties.
Blade structural damping, sweep and droop, however,
are not included.

B>

(0+0),

MY

Fig. 2 Hub Frame and Principal Axes
Coordinates With Torsional Deformation
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Fig. 3 Blade Structural Parameter Offsets

Fig. 4 Adjacent Blade Segments

The set of continuos equations of motion were posed
as a set of finite difference equations using a lumped
parameter methodology to obtain a solution for the
set of differential equations of motion. The lumped
parameter technique utilized in this work is a transfer
matrix method type of analysis first posed by Holzer
in an analysis for the torsional vibration of shafts.
The blade is divided into a number of spanwise ele-
ments, shown in Figure 4., not necessarily equal in
length, each of which consists of a massless elastic
beam segment with stiffness GJ and a concentrated
inertia.
The blade pitch angle, 4, defined as

00 =00+ 0,ccosy + 0 1s5inyy + 0 twn 1)

is implemented through the steady and 1st harmonic
pitch inputs at the blade root and the blade built-in
twist. The process for the variation of the states in the
identification methodology is developed such that the
analysis advances from the root of the blade to the tip.
The states My, ¢, which are located at the right side
of the mass station, are represented along the blade at
each of the spanwise segments and change in such a
manner that the variation can be considered to occur
in a series of steps. Within each analysis step from the
station n+1 to station n, there are three intermediate
steps. The first involves a rotation discontinuity
A(6+ @), between station n+1 and station n to
account for pre-twist and elastic deformation. The
second intermediate step, advancing from the left side
of the segment to the right, involves movement across
the massless elastic nth segment of length £, and the
third involves movement across the nth lumped mass
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moment of inertia of the nth station.

Based on the process described above, the equations
of motion in lumped parameter form, can be devel-
oped. To do so, the forces and moments that act on
the nth blade segment are determined and the equilib-
rium of the segment in terms of a set of relations is
obtained. These forces and moments are due to aer-
odynamic, inertia and centrifugal type loadings and
arise due to mass offset from the elastic axis and
torque offset. The equilibrium of the moments, which
include the external moments, and the elastic rotation
at the nth blade segment leads to the relations (2) and
(3). Equation (5) signify terms due to direct and in-
direct inertia and centrifugal forces acting on the
mass.

Mx,n+1 = Mx,n + IMx,n + Ma,n (2)

(Mxn+1 £ n+Tar k36’ £ 0)
(GJn + TasnikR)

P = ba — 3)

where the boundary conditions are

Mx root
Mx,root = Mx,datay QS: Kk and Mx,tip: 0
¢

and the centrifugal force along the blade is

Tn+1 == Tn + mnﬂzrn, (4)
Myn = —mpQ2ene, (SinO, + ¢, cosO,)
- Ie,n (¢n + en) (5)

— Q*(Ien—1I,n) (Pacos20, + sinO,cosO,)
The external pitching moment can then be obtained

Ma.n = Mx,n+l _Mx,n + IO,n (¢n+ Gn)
+ mpQ2ene, (sin0 , + ¢y cos 0 ,) (6)
+ Q% (Ign — 1) (hocos20,+sin®, cosh,)

5. Method Of Solution

In this analysis only the steady state solutions are
sought. It is therefore assumed that the steady state
response of a rotor blade is periodic so a harmonic
solution is applied to the equations of motion. These
harmonics are of the form a..cos(xQt) +a,ssin (Qt)
and result in a separate set of identified parameters
for each x» harmonic where w=xQ. The torsional
deformation, ¢, can readily be identified through the
use of the experimental torsion strain measures.
Using the torsional moment, M, the torsional defor-
mations are identified as the solution transfers from
the blade torsion bearing to the tip. The process is
initiated using the boundary condition at the root,
Broot=Mxroot/kg. With the elastic torsion deformation
known, the spanwise external pitching moments can
be identified for a given harmonic.



6. Results And Conclusion

The UH-60A main rotor was used as the model in
the method verification and the identification analy-
sis. The UH-60A main rotor geometric and structural
properties were obtained from NASA Ames Research
Center and the external moment data, used for verifi-
cation, were obtained from flight test as part of the
NASA/Army UH-60A Black Hawk Airloads Pro-
gram (BHAP). The UH-60A main rotor blade has an
aft swept tip which was ignored in the analysis.

The torsion bearing was assumed to be co-located
with the flap and lag elastomeric bearing and the main
rotor blade was discretized into 48 spanwise ele-
ments for a total of 49 radial stations. The outer 48
radial stations along the blade, r=. 06R to 1.0R, are
equally spaced while the 49th station was placed at .
0466R to coincide with the focal point of the elas-
tomeric bearing. The lengths of the outer 47 elements
is £ =.02R and the inner most element between sta-
tion 48 and 49 has a length of £ =, 0134R. The built-
in blade twist, which washes out in a linear manner
for most of the blade, has a positive slope beyond ., 94
R. The control system stiffness, k4, was assumed to
be linear.

In the analysis, it is desirable to use torsion
moments obtained from experimental data to deter-
mine the spanwise external moments. However, due
to limitations in the BHAP torsion strain measure
data, these data were not utilized. Consequently, to
obtain the distributed torsional moments, simulation
was used and to generate these data sets, a prediction
methodology was employed. The simulated distribut-
ed torsional moments were generated using the tor-
sion equations from Reference [4] in the form of
the Transfer Matrix Method (TMM) and the BHAP
airloads data were used as the forcing function. To
validate this structural dynamics model, the modes
and frequencies from the prediction analysis were
checked for agreement with the results from
CAMRAD/JA noted in Reference [6]. CAMRAD/
JA computes only nonrotating torsion modes so their
solution is independent of rotor speed or collective
pitch. Also in CAMRAD/JA, only the cantilever beam
case is considered for torsion. Table 1 and Figure 5.
provide the eigenvalues and eigenvectors. The identifi-
cation analysis only considered the first 10 harmonics
(including the steady term) and the TMM correlates
very well for this frequency range.

The identification process of the rotor blade’s exter-
nal moments depends on, among other things, the
accurate identification of the blade’s displacements.
To obtain confidence in the identified moments and
the methodology itself, a second validation exercise

Table | Comparison of Eigenvalues: Transfer
Matrix Method (TMM) vs. CAMRAD/JA,
Torsion Modes (Per Rev), Rigid Root

TMM CAMRAD/JA
Mode Torsion Torsion
1 5.333 5.357
2 4.895 4.905
3 15.657 15.109
4 25.992 25.098
5 36.444 36.765
6 47.755 50.813
7 67.681 69.645
8 H#i# #
9 it #it
10 ## #it
1.5 : : :
Ist Elastic Mode
ffff 2nd Elastic Mode
I o CAMRAD/JA Results =
o CAMRAD/JA Results
0.5- X
s Oboce A
0.5/ |
°1.5 2

el 't 1 L L
0 0.25 0.5 0.75 |

/R
Fig. 5 Modal Analysis: Transfer Matrix
Method vs. CAMRAD/JA, |st and 2nd Elastic

Torsion Modes, Rigid Root

was conducted at a midpoint in the solution process.
As such, the identified blade torsional displacements,
fn, were correlated with the simulated data from the
response methodology. The identification methodol-
ogy for the UH-60A employed the simulation data for
the flight conditions, x=0. and «£=0.193. The air
density and rotor speed, corresponding to the two
flight conditions, were used. For each respective flight
condition, the identification analysis was performed at
two rotor azimuthal positions, ¥=0. and ¥=90. deg.
Figures 6 and 7 provide examples for the steady and
first harmonic cosine displacement coefficients at two
different advance ratios. One set of parameter curves,
in each figure, are the simulated data and are consid-
ered to be an “exact” set of measurements which are
labeled as “Data” and are referred to as“measured
data”, The other set of parameter curves are the
data generated from the identification methodology
and are labeled as “Identification”. As can be seen,
the correlation between the measured data and the
identified results are excellent.

The results from the analysis of the distributed
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Fig. 7 Nondimensionalized Torsional
Displacement, Zeroth and First Harmonic,
u=0.193, ¢¥=0. deg.

external moments, M,, are next correlated with
experimental flight test data from the UH-60A flight
test program as shown in Figures 8 through 11. A
range of harmonics and examples of =0, 90 deg.
are shown. In each figure, one set of parameter curves
are the UH-60A airloads flight test data which are an
exact set of measurements and are labeled as “Flight
Test”. The other set of parameter curves are the
corresponding external moments generated from the
identification methodology and are labeled as “Identi-
fication”, The external moment, M,, which is in per
unit length in the analysis, has been nondimensional-
ized for presentation by the factor p (QR)?2 ¢% Again, it
can be seen that the correlation between the flight test
data and the identified results are excellent.

The results provided above, in general, have an
excellent correlation with the experimental data pro-
vided therein. However, since random errors, in the
form of noise, in the simulated data does not exist, the
results are not fortuitous and are an inevitable out-
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Fig. 8 Nondimensionalized Identified
External Moment About x Axis, Zeroth, First
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Fig. 9 Nondimensionalized Identified
External Moment About x Axis, Third, Fourth
and Fifth Harmonic, x=0., 4% =0. deg.
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come. Since, noise can influence the experimental
data, an error analysis was performed to investigate
the sensitivity of the identified parameters to random
errors of measured data. The error analysis was
performed in a realistic sense with the simulated
torsion moments perturbed at only 8 radial locations.
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The sensor location points were equally spaced at ., 1
R intervals from r=, 2R to r=, 9R where it is noted that
these points coincided with specific calculation points
on the blade. Two error cases were investigated and
consisted of a =2 percent random error and a £5%
random error, respectively. The errors consisted of a
set of 8 amplification factors biased about zero and
having a total amplitude of 49 and 109, respective-
ly. The external loads were identified for these two
error cases. The blade displacements are very insensi-
tive, however, to perturbations and as such, only the
59% random error case was considered as shown in
Figure 12. Figure 13 presents the +29% random
error case for the results of the external moments.
The results show that the random noise can have a
fairly large influence on the steady harmonic of the
identified external moments. Reference [3] addres-
ses a technique, based on an error analysis strategy,
which can be used to limit the errors and provide a
reasonable moment distribution. This technique was
not applied in this analysis due to space constraints.
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