非破壊試験による構造物内部の劣化診断方法として、超音波試験（弾性波入力法試験）とAE法試験があります。これらの方法は、構造物の診断において、その材料特性が同性で均質材料であることから、弾性波の乱反射や波形エネルギーの減衰を少なく定量的な判断が可能かつ正確な診断が行えること等の理由から、現在多く実用されています。一方RC構造物は、複合材料であるため弾性波が乱れる等の理由から、測定値の解析が複雑で難しいため、実用的にはあまり用いられてなく、その方法および基本を模索しているのが現状です。

今回、診断対象としたRC構造物は図1のとおりで、直径2mの橋脚側面に発生しているひび割れに対して、上記に挙げた非破壊試験の結果から、ひび割れの診断を行い、RC構造物に対する実用性の確認を行いました。

弾性波入力法試験

この非破壊試験は、構造物の表面から何らかの方法で弾性波を入力（今回は電圧、シュミットハンマー等を入力）、コンクリート内を伝わりいた後の波形エネルギーの減衰量から、コンクリートの品質、内部劣化度、ひび割れ深さ等の診断を行うものです。
（2）診断結果

表1における伝達率＝0は、弾性波伝達経路間に開口ひび割れが存在しているため、入力した弾性波が全く伝達していないと推測できます。また、微少な伝達率を示す箇所においては、伝達経路間における微細なひび割れ、骨材等による弾性波の乱反射の影響によるものと推測できます。

以上の診断結果から推測できる、ひび割れ分布状況を模式図化すると図3のようになります。

弾性波入力試験結果から、劣化診断結果として
(1) 橋脚内部でのひび割れ分布状況の推測ができた。
(2) 推定された分布状況として、橋脚上部においては橋脚全面に分布しているのに対し、下方に向かうにつれ徐々に狭く分布していると思われる。

図3 開口ひび割れ領域の判定結果

AE法
(Acoustic Emission Computed Tomography)

この試験方法は、構造物に対し車両通行のような活荷重などの外的負荷による振動作用により、ひび割れ箇所に発生する弾性波を計測し、その発生頻度、エネルギー量の評価により、内部劣化進行状況の診断を行うものです。

(1) 試験方法（AE法）

AE波検出センサを図4のように配置し、それぞれのセンサが検出した弾性波発生数と、その波形エネルギー量により、ひび割れ状況の診断を行いました。

図4 AE計測におけるセンサ配置図

(2) 診断結果

弾性波発生数と波形エネルギー量を見ると、CH1、2におけるエネルギー量は、波形当りのエネルギー量が少なからず1波形当たりのエネルギー量が多いことを表しています。これは、活荷重作用時におけるひび割れ面どうしの摩擦により、大きなエネルギーを持つ弾性波が発生したものと推定できます。

CH6では、波形検出数、エネルギー量がともに高い値を示しており、弾性波がCH6付近において多く発生していると考えられます。

AE法試験結果より、ひび割れ状況の診断を行うと次のようにあります。

・CH6付近（橋脚天端より5m）において、多くの弾性波とエネルギー量の確認から、CH6付近がひび割れの先端付近と推測され、ひび割れ活動が進んでいると思われる。

まとめ

今回の弾性波入力法、AE法試験の2つの非破壊試験により判断された結果をまとめて次のようになります。

ひび割れは、橋脚天端より1.3m付近まで橋脚全面に分布しており、活荷重作用時にはひび割れ面どうし、接触している箇所もあります。また、ひび割れは下方に向かうにつれて徐々に狭く分布し、先端箇所は橋脚天端より5.0m付近に存在し、現在もひび割れが進行しています。

診断終了後、補修工事の一貫として橋脚天端より1.5mまで、ハツリとした結果、今回の診断結果とひび割れ分布状況が一致していることがわかりました。

今回の診断結果から、非破壊試験のRC構造物に対する適用化の可能性は高く、今後その方法および解析技術の進歩により、実用性的向上がなされるものと考えられます。