BIM への取り組み

~ 建物情報の統合化へむけて~

Challenge To Building Information Model

久米 昭光 *1 Akimitsu KUME ここ数年,建設業界においては、BIM 化への動きが活発化している。新聞・雑誌等では、BIM の解説や建設業各社 の取組みなどが頻繁に紹介されるようになった。ゼネコン各社でもその動きは顕著であり、「BIM 指定物件」など も出てきている。「BIM 指定物件」とは、BIM 対応できる業者のみが参加できる物件であり、対応できない業者は、 受注の機会を大きく失うことにもなる。また、鉄骨ファブとしても、「BIM を活かした技術提案」を積極的に行う 必要も出てきた。川田工業㈱(以下 当社)では、2009 年から、BIM 対応 CAD である『Tekla Structures : Tekla 社』(以下 テクラ)を導入している。今後、受注物件の BIM 化が進むと予想されるなか、当社での取り組みを紹 介する。

キーワード: BIM, 3次元モデル, 3D モデル, 3次元 CAD, 3DCAD

1. BIM の概要

BIM (ビム) とは,『ビルディング・インフォメーショ ン・モデル』(Building Information Model)の略称であ る。建物に関わるあらゆる情報を,コンピュータ内の「3 次元モデル」に統合し,これを一種の建物データベース とし,設計から施工,維持管理に至るプロジェクト全体 で有効利用しようというものである。

BIM は、2002 年ごろから欧米の主要 CAD ベンダが具体的な提唱をはじめ、2005 年の米国建築家協会(AIA)の大会で発表された。その後、日本国内へもその普及の波が押し寄せてきた。日本国内での具体的な BIM の普及の動きとしては、2009 年の国土交通省による BIM 導入宣言が1つの大きなきっかけとなったようである。

BIM のベースとなるのは,3次元モデルの中の「ソリッドモデル」である。

図1 BIM のベースであるソリッドモデル

このソリッドモデルに部材情報や製品情報等を持たせたものが, BIM データの基本である。

続いて、テクラでの具体的な画面を提示しながら、説 明する。

テクラでは,部材(モデル)1つ1つが,名前,プロ ファイル(断面サイズ),材質,仕上げ材などの情報を持っ ている。

図2 テクラの部材情報・製品情報

^{*1} 川田工業㈱鋼構造事業部技術統括部栃木工場生産設計課係長

^{*2} 川田工業㈱鋼構造事業部技術統括部栃木工場生産設計課 課長

さらに,建物の製作にかかわる各工程の情報を追加す ることができ,建物のライフサイクル全体を通し,情報 を共有,参照することができる。

Tekla Structures x64 Beam (1)				
N° 5X-9	設計	製作管理	USER FIEL	.DS 解析
IFC エクスポート	ワークフロ	ー 設計 ワ・	-クフロー 製作	ワークフロー 建方
建方				
建方コード				
建方コメント				
現場状況				•
現場打ちRC状況				•
建方開始日-予定				•
建方終了日-予定		Δ		•
建方開始日-実施				•
建方終了日-実施				
例)建方の情報				
<u>O</u> K 既定値	(<u>A</u>) 変更	〔 <u>M</u>) 取得	ig) [7]	+p>th(X)

図3 テクラの各工程の情報例

例えば,各部材に建方日を設定して,鉄骨建方シミュ レーションとして表現し,現場作業での共通認識を得る ことができる。

図 4 鉄骨建方シミュレーションの例

また,建物の完成後も,部材の,メーカ名,製造年月 などの情報をもとに,建物の維持管理などに利用するこ とができる。例えば,ウォークスルー機能などで建物内 を擬似的に歩き,点検時期や耐用年数が近づいた部材を 確認する,などといった作業を行うことができる。

図5 建物の維持管理の例

このように,BIM は単なる3次元モデルということで はなく,建物の設計から施工,維持管理にわたり,その 情報を有効利用することが,本来の姿であるといえる。

2. 鉄骨ファブとしての BIM モデルの活用

(1) 製作部材の検討・確認

通常,客先から受領する鉄骨図面は,一般的な「伏図」, 「軸組図」などの図面である。形状が複雑な鉄骨であれ ばあるほど,鉄骨どうしの取り合い,継手の配置,鉄骨 どうしが干渉する場合の対処など,膨大な協議時間が必 要となる。当社では,形状が複雑な鉄骨である場合は, あらかじめ鉄骨 BIM モデルを作成し,協議の場で有効 活用している。画面を見ながら,対象部材を拡大表示・ 回転表示等することにより,「伏図」や「軸組図」ではわ かりづらい,鉄骨の形状,向き,他の鉄骨との取り合い や干渉の状態,などがひとめで確認でき,協議時間の大 幅短縮を実現している。

写真1 客先協議での活用例

(2) 使用鋼材の発注

鉄骨 BIM モデルを入力すると,正確な鋼材数量表を簡 単に出力できる。EXCEL データ等にも出力できるので, そのまま鋼材発注のシステムに引き渡すことが可能であ り,正確,迅速な鋼材の発注が行える。

図7 鋼材数量表

(3) 製作資料・提案資料の作成

客先から受領した詳細図だけでは,製作資料の作成が 困難となる場合がある。この例では,受領した詳細図だ けでは,具体的な構造物の形状がイメージできず,例え ば,部材どうしの溶接面がどのようになるのか,また, 輸送可能な重量なのか,といった検討が困難となった。 あらかじめ鉄骨 BIM モデルを作成することにより,こ れらの検討をスムーズに行うことができた。これにより 最適な形状を決定することができ,製作資料を,正確, 迅速に作成することができた。また,そのつど鋼材数量 や溶接量などを簡単に算出できるため,経済的な面も同 時に検討することができ,客先には最適な VE (Value Engineering) 提案をすることができた。

図8 形状決定と VE 提案例

3. BIM モデル作成の効率化への挑戦

BIM モデル作成を効率的に行う(できるだけ早く,正 確に行う)ことは課題のひとつである。CAD ベンダ (Tekla 社)のトレーニングコースの受講や,スタッフ 間でのスキルアップミーティングを行うといった取り組 みは,常に行っている。このような基礎的な手法に加え, 独自の取り組みも行っている。テクラは強力なカスタマ イズ機能(Tekla Open API)を有しており,これを利用 したオリジナル機能開発の取り組みを紹介する。

(1)『オリジナル機能開発』 による

効率化への取り組み その1

テクラにおいて,入力済みの部材(モデル)のリスト を出力して,そのリスト上で部材情報をチェックするこ とは可能ではある。しかし,部材情報の修正,変更を行 うには,基本的には対象となる部材を画面上で探し出し, 1つ1つをダブルクリックして行うしかなく,手間がか かっていた。

図9 モデル情報の修正,変更の様子

そこで,エクセルシートと連動し,一覧で,部材の チェックや一括変更ができるオリジナル機能(マクロメ ニュー)を自社開発した。

図 10 自社開発したエクセル連動マクロメニュー

あらかじめチェック,修正したい部材を選択し,メ ニューを起動すると,EXCEL シートが表示され,1部 材がセル1行に対応する形で情報が表示される。相互に, 部材のハイライト⇔EXCELのセル選択,ができるため, 部材配置位置と部材情報を同時に確認できる。適宜「並 べ替え」ボタンを押すなどし,一覧表での情報のチェッ クも行える。誤った情報が入力されていた場合は, EXCELのセルを修正して「モデル更新」ボタンを押す と,部材情報が瞬時に変更される。これにより,断面サ イズなどを一斉に変更するなど,各種設計変更にも迅速 に対応できる。

(2)『オリジナル機能開発』 による

効率化への取り組み その2

現在,図 11 のようなフランジ拡幅梁の物件が増えて いる。テクラの標準メニューを使い、1 枚 1 枚プレート を作図するしかなく、手間がかかっていた。

図 11 フランジ拡幅梁

これも、オリジナル機能(マクロメニュー)を作成す

ることで、効率的に作成できるようにした。

図 12 自社開発したフランジ拡幅梁作図メニュー

これらの自社開発したオリジナル機能(マクロメ ニュー)を活用したことにより,モデル入力効率を上げ ることに成功している。

4. BIM の連携

鉄骨ファブとして、『どのように BIM モデルを活用し ているか』、また、『いかに BIM モデルを効率的に作成 しているか』について述べた。しかし、最終目的は、完 成した BIM モデルを利用し、建物の設計から施工、維 持管理にわたり、その情報を有効に活用することである (図 6 参照)。そのためには、ゼネコンはじめ外部の各 機関の異なったプラットフォーム上で、正しく BIM 情 報のやりとりができること(BIM の連携)がもっとも重 要である。BIM の連携が実現した例を紹介する。

(1) 例1 ~鉄骨建方シミュレーション~

図 14 鉄骨建方シミュレーションの概要

この例では、まず当社はテクラを使用し、該当鉄骨の BIM モデル入力を行った。ゼネコン側は、当社とは異な る BIM 対応 CAD を使用している状況であった。さらに それぞれの BIM 対応 CAD には、ビューイング専用ソフ トが存在しており、これらのソフトにはスライドショー 機能(モデルを固定の視点から見た画面を複数設定し、 それぞれを滑らかにつなげて動画のように表現する機 能)があるのが確認された。この機能を使用し、相互に、 異なる BIM 対応 CAD で鉄骨建方シミュレーションを行 い、その検証を行った。

当社では, ビューイング専用ソフト (Tekla BIM Sight) 上で, まず, 図 15 のようなスライド画面を, 複 数作成した。

図 15 スライド画面例

そして、スライドショー機能を使い、鉄骨建方シミュ レーションを行うことができた。(図 16,図 17 は、シミュ レーション実行中の画面をキャプチャしたものである)

図 16 鉄骨建方シミュレーション実行 その 1

図 17 鉄骨建方シミュレーション実行 その 2

なお、ゼネコン側からは、ビューイング専用ソフト上 で鉄骨建方シミュレーションを行うことができたとの報 告を受けた。これにより、異なる BIM 対応 CAD 上で正 しく情報のやりとりができること、また、異なるビュー イング専用ソフト上で鉄骨建方シミュレーションを行え ることが確認できた。

(2) 例 2 ~ BIM データの統合化検証~

この例では、ゼネコンにおいて、当社で作成した鉄骨 BIM モデルと、他の BIM モデルとの統合化検証が行わ れた(図 18 参照)。BIM モデルの統合が可能であり、干 渉等の確認が行えることが検証された(図 19~21 参照)。

図 18 BIM モデルの統合化検証

図 19 ゼネコンでの検証結果 その 1

論文·報告 BIM への取り組み

図 20 ゼネコンでの検証結果 その 2

図 21 ゼネコンでの検証結果 その 3

(3) 例 3 ~構造 BIM データの利用~

この例では,構造設計の段階で作成された BIM デー タ(構造 BIM データ)をあらかじめ受領することがで きた。この構造 BIM データをベースとして読み込み, 当社で鉄骨 BIM モデルを完成させることができた。

図 22 構造 BIM データから鉄骨 BIM モデルを作成

受領した構造 BIM データは,国際的な鋼構造設計の 業界標準ファイル形式である SDNF (Steel Detailing Neutral File)形式であった。構造 BIM データをテクラ で読み込んだところ,図23のような結果となった。

図 23 構造 BIM データの読み込み結果

部材の作図位置や、断面サイズ、色、などは、おおむ ね表現できていることが確認できた。ただし、部材の作 図位置はあくまでも構造設計上の座標となっているため、 部材どうしが干渉している箇所や、貫通している箇所な どは見られた。

これらの干渉箇所・貫通箇所等を修正し, さらに継ぎ 手・ダイヤフラムなどを追加し, 図 24 のような鉄骨 BIM モデルを完成させることができた。

図 24 完成した鉄骨 BIM モデル

5. まとめ

かつて、手書き図面から CAD 図面へ移行し、それがあたり前となったように、BIM データで設計図を受領する時代がやってくる。

図 25 BIM データで設計図を受領

当社では,BIM データの連携に対応し,またオリジナ ル機能の開発等を通し,効率よくモデルを作成する体制 を整えつつある(図 25 参照)。今後も BIM 化に対応で きる体制で臨んでいく。