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 本研究は，鋼橋 RC 床版の老朽化に伴う更新工事において用いられるプレキャスト PC 床版の RC 接合部に適用

される KK 合理化継手を，数値解析により照査することを目的とする。KK 合理化継手は，鉄筋先端にナットを設

置した機械式定着を用いたものであり，これまで機械式定着の体系的な照査方法が確立されていないため，実験に

よる性能確認が行われている。そこで，本稿ではKK合理化継手で用いるナット付き鉄筋の付着特性を明らかにし，

既往の付着応力－すべり－ひずみ関係式を基に機械式定着の影響を考慮した提案式を示した。さらに，提案式を適

用した非線形有限要素解析を実施し，数値解析による照査の可能性を示した。 

キーワード：KK 合理化継手，プレキャスト PC 床版，機械式定着，非線形有限要素解析，ナット 

 

 

1．はじめに 

近年，高度経済成長期に建設された道路橋に経年によ

る劣化や損傷が確認されており，なかでも，鋼道路橋の

鉄筋コンクリート床版（以下，RC 床版とする）で劣化・

損傷が進行している。この対応策として耐久性に優れる

プレストレストコンクリート床版（以下，PC 床版とす

る）に取り替える更新工事が行われており，工事期間中

の交通規制の長期化などの影響を抑えるため，プレキャ

スト PC 床版が採用されている。 

プレキャスト部材の構築には部材間の接合構造が必要

で，プレキャスト PC 床版の継手構造として一般的には

図 1 に示すループ継手が使用されている。しかし，ルー

プ継手は鉄筋加工の制約により薄い床版に使用できない

ことから，図 2 に示す先端に機械式定着としてナットを

設置した鉄筋（以下，合理化鉄筋とする）を使用した継

手構造（以下，KK 合理化継手とする）を開発した 1),2),3)。 

機械式定着を用いた定着部や接合部は，照査方法が規

定されていないこと，応力状態が特定されていないこと，

部材としての挙動が解明されていないこと，などにより

体系的な照査方法が確立されていないため，多くの時間

とコストをかけた実験による性能確認を行っている。 

そこで，時間やコストの縮減を目的として，コンクリー

ト標準示方書「定着破壊に対する照査」［2022 年制定／

設計編：標準］4)に示される鉄筋自由端すべりの算定式を

基に合理化鉄筋の付着応力－すべり－ひずみ関係式を提

案し，数値解析による照査を目標とした。 

本稿では，提案式の概要を示し，非線形有限要素解析

のコンクリート－鉄筋間の付着モデルとして提案式を用

いた解析結果を示し，数値解析による照査の可能性を示

す。 

2．実験概要 

コンクリート標準示方書の自由端すべりの算定式は，

島ら 5)が提案する付着応力－すべり－ひずみ関係式（式

(2)，以下，島式とする）が用いられており，マッシブな

コンクリートに鉄筋を定着する場合を想定している。そ

こで，合理化鉄筋の付着特性を確認するためにマッシブ

 
図 1 ループ継手 

 
図 2 KK 合理化継手 
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なコンクリート試験体（以下，マッシブ試験体とする）

に合理化鉄筋を定着した引抜き試験を実施 6)し，さらに，

床版の継手構造への使用を想定した薄い部材（以下，版

模擬試験体とする）に定着した引抜き試験を実施した。

試験体諸元と材料特性を表 1 に，鉄筋の付着長とひずみ

ゲージ設置位置を図 3 に示す。 

（1） 使用材料 

コンクリートの圧縮強度は，実構造のプレキャストPC

床版接合部を想定し，設計強度を 50 N/mm2 に設定した。

鉄筋は，普通鉄筋 D19（SD345）を用いた。 

（2） 試験体 

試験体形状を図 4 に示す。マッシブ試験体は，鉄筋定

着・継手指針［2007 年版］7)を参考に断面を 500 mm×

500 mm とし，鉄筋の付着長と表面近傍の付着劣化の影響

を排除するための非付着区間長を確保できる高さ 300 mm

とし，鉄筋を中央に配置した。 

また，版模擬試験体は，断面を 170 mm×300 mm，高

さ 450 mm とし，鉄筋はかぶりを考慮した表面から 50 mm

位置に配置した。 

（3） 計測項目 

載荷荷重をロードセル，鉄筋自由端の変位（すべり）

を変位計，鉄筋の軸ひずみをひずみゲージにより計測し

た。鉄筋自由端変位は鉄筋先端から延長した全ネジボル

ト先端を計測した。ひずみゲージの設置位置を図 3 に測

点番号を図 5 に示す。 

3．付着応力－すべり－ひずみ関係 

（1） 既往関係式の確認 

マッシブ試験体で定着具を設置しない鉄筋による引抜

き試験を実施し，図 6 に示す実測値を得た。島式による

計算値と比較を行い，荷重－変位関係と荷重－鉄筋軸ひ

ずみ関係がおおむね一致することを確認した。 

（2） 定着具影響の定式化 

鉄筋先端に取り付けた定着具により自由端変位が拘束

されることから，その影響を考慮するため引抜き試験の

定着具位置（測点(1)）の軸ひずみと自由端変位の関係か

ら鉄筋径 D19，ナット M18 を使用した場合の定着具評

価式として式(1)を導出した。 

表 1 試験体諸元および材料特性値 

No. 
試験体 
名称 

寸法 
(mm) 

付着長 
(mm) 

定着具 
(mm) 

鉄筋 コンクリート 
径 

(mm) 
弾性係数 
(N/mm2) 

圧縮強度 
(N/mm2) 

割裂強度 
(N/mm2) 

弾性係数 
(N/mm2) 

1 D19-4d-N 

500×500 
300 

75 
－ 

D19 
公称径 189,000 

53.5 4.36 31,500 2 D19-4d-H 

M18 

3 D19-n4d-4d-H 
4 D19-0d-H 0 

54.9 4.86 32,500 
5 D19-8d-H 150 

6 D19-4d-SH 
300×170 
×450 

75 

  ※試験体名称の d は鉄筋径を表している。付着長＝数値×d として 5mm ラウンドとした。 
   n4d は定着具側の非付着区間長，末尾の N は定着具なし，H は定着具あり，SH は床版を模擬した部材を表す。 
   試験体数は 2 とし，計測結果が得られたものは 2 試験体分の結果を示す。 

     
D19-4d-N D19-4d-H(SH) D19-n4d-4d-H D19-0d-H D19-8d-H 

図 3 鉄筋の付着長・ひずみゲージ設置位置 
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図 6 D19-4d-N 
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    a)マッシブ試験体       b)版模擬試験体 

図 4 試験体形状 
 

 
図 5 測点番号 
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 𝜀௔ = 𝐾௘௫௣ × 𝑆௔ + 𝑆𝑒𝑔      式(1) 

ここに， 

 𝐾௘௫௣ = 7 725 × 10ି଺ 𝑆𝑒𝑔 = 36.7 × 10ି଺ 

 𝜀௔：定着具位置の鉄筋軸ひずみ 

 𝑆௔：定着具位置の変位(mm) 

定着具を設置した場合の実測値は，図 9 に示すように

定着具を設置しない図 6 の実測値に比べ小さな値を示し

た。しかし，島式にナットの影響を境界条件として式(1)

を適用すると自由端変位が定着具を設置した場合の実測

値を過大に評価する結果となり，そのままの適用は困難

であると考えられた。 

（3） 合理化鉄筋における関係式の提案 

平均付着応力の実測値に着目した結果，定着具の有無

に関わらず，図 7 に示す荷重－平均付着応力関係におい

て一致することが確認された。 

 𝜏 = 𝜏଴(𝑠) ∙ 𝑔(𝜀)      式(2) 

ここに，  

  𝜏଴(𝑠) = 0.73൫𝑙𝑛(1 + 5𝑠)൯
ଷ

∙ 𝑓௖
ᇱ （すべりの関数） 

  𝑔(𝜀) = 𝜏
𝜏଴ൗ = 1

(1 + 𝜀 × 10ହ)ൗ  （ひずみの関数） 

 𝑠 = 1 000 × 𝑆 𝐷⁄  

 𝜏：付着応力(N/mm2)，𝑓௖
ᇱ：コンクリート強度(N/mm2) 

 𝑆：すべり量(mm)，𝐷：鉄筋径(mm)，𝜀：ひずみ 

島式は，式(2)に示すように付着応力 𝜏 をすべり量の関

数  𝜏଴(𝑠) と鉄筋ひずみの関数  𝑔(𝜀) の積で表している。

𝜏଴(𝑠) は，鉄筋軸ひずみが 0 の時の任意のすべり量に対

する付着応力を示しており，𝑔(𝜀) は，付着応力 𝜏 に及ぼ

す鉄筋ひずみの影響を表している。これらの関係から任

意のすべり量に対し，ひずみの増加により付着応力  𝜏 が

減少することになる。つまり，定着具の有無に関わらず

付着応力  𝜏 が一致していることは，ひずみの増加に伴い

すべりも増加していることを意味し，すべりに及ぼすひ

ずみの影響が島式と異なることが示唆された。そこで，

鉄筋ひずみの関数  𝑔(𝜀) の逆数と鉄筋軸ひずみの関係に

着目した結果，図 8 に示す1 𝑔(𝜀)⁄ －ひずみ関係において，

島式の場合の傾き 1.0 に対し約 0.6 となった。この傾き

0.6 を影響係数として式(2)を導出した。なお，この影響

係数 0.6 は，鉄筋径 D19，ナット M18 を使用した場合

の値であり，鉄筋径やナットサイズによって変化すると

考えられる。 

 
𝜏

𝑓′௖
=

0.73൫𝑙𝑛(1 + 5𝑠)൯
ଷ

0.6 ∙ (1 + 𝜀 × 10ହ)
      式(2) 

式(1)と式(2)を合理化鉄筋の付着応力－すべり－ひず

み関係式（以下，提案式とする）として提案し，図 9 に

D19-4d-H の実測値との関係を示す。計算値が実測値に

おおむね一致することから，マッシブ試験体に定着した

合理化鉄筋の引抜きに対する挙動を評価できることを確

認した。また，版模擬試験体についても同様に計算値が

実測におおむね一致することを確認した。 

4．再現解析（引抜き試験） 

提案式を合理化鉄筋の付着構成則として用いることで，

上述した引抜き試験を非線形有限要素解析により再現可

能か，汎用 FEM 解析コード「DIANA(DIANAFEA)」8)

を用い検証した。 

（1） 解析モデル概要 

対象試験体は，マッシブ試験体（D19-4d-H）と版模擬

試験体（D19-4d-SH）の 2 試験体とした。図 10 に示す

 
  図 7 荷重-平均付着応力関係  図 8 1/g(ε)-ひずみ関係 

 
     荷重-変位関係        荷重-ひずみ関係 

図 9 D19-4d-H 
 

 
     マッシブモデル         版模擬試験体 

図 10 解析モデル 
 

表 2 要素タイプ 

 要素タイプ 備考 

コンクリート ソリッド要素 材料非線形 

鉄筋 
(付着範囲) 

トラスタイプ 
付着すべり埋込鉄筋要素 

材料非線形 

鉄筋 トラス要素 材料非線形 
 

0

20

40

60

80

100

0 5 10 15 20 25

L
oa

d(
kN

)

τ(N/mm2)

D19-4d-N

D19-4d-H

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

1+
ε×

10
5

(×
10

2 )

Strain(×10-3)

D19-4d-H
D19-n4d-4d-H
1/g(ε)（島式）

近似線

0

20

40

60

80

100

0.00 0.05 0.10 0.15

L
oa

d(
kN

)

Displacement(mm)

実測値

計算値

0

20

40

60

80

100

0 1000 2000

L
oa

d(
kN

)

Strain(×10-6)

Str1
Str2
Str3
Str4
計算値



論文･報告 KK 合理化継手の定着特性に関する研究 

 
川田技報 Vol.45 2026 論文・報告 7-4 

ように半断面としてモデル化し，表 2 に示す要素タイプ

を用い，鉄筋とコンクリートの物性値は，引抜き試験体

に一致させた。鉄筋の降伏条件は von Mises 基準を用い

たバイリニアモデルとし，降伏後の剛性は 1/100 とした。

コンクリートのひび割れモデルには固定ひび割れモデル

を用いた。応力－ひずみ関係については，圧縮側は中村

ら 9)による圧縮破壊エネルギーを考慮した放物線モデル

とし，引張側は Hordi jk モデルを用いた。このモデルで

使用する引張強度には割裂試験により求めた値を適用し，

引張破壊エネルギーはコンクリート標準示方書 4)に従い

算出した。また，コンクリートひび割れ面でのせん断伝

達モデルには Al-Mahaidi モデルを適用した。ひび割れ

後の圧縮強度低減にはコンクリート標準示方書に準拠し

たモデルを用い，ポアソン比減少を考慮した。鉄筋周囲

のコンクリート要素のみ横方向ひび割れによる圧縮強度

の低減を考慮しないモデルを用いた。 

鉄筋とコンクリート間に付着構成則として式(2)を設

定し，鉄筋定着端要素に式(1)を考慮した。拘束は，1/2 モ

デル対称面と載荷試験で反力面とした範囲に設定し，荷

重は，鉄筋上端に作用させた。 

（2） 解析結果 

図 11 にマッシブ試験体と解析モデルの実測値と FEM

値の荷重－変位関係と荷重－ひずみ関係を示す。鉄筋や

コンクリートの非線形性を考慮したことにより，図 9 に

示す計算値に比べ，より実測値に近い結果となった。 

図 12 にマッシブモデルと版模擬モデルの鉄筋先端付

近の荷重－最大主応力関係を示す。コンクリートの引張

強度を試験体に一致させたため，最大値が 0.5 N/mm2 程

度異なっているが，挙動はおおむね一致している。また，

版模擬モデルのかぶり側と内部側で同一荷重時に発生す

る応力に最大 0.2 N/mm2 程度の差が確認されたが，最大

応力は同程度であった。 

図 13 に鉄筋先端付近のコンクリート応力が引張強度

程度になる 40 kN 載荷時の付着応力ダイアグラム図を

示す。付着応力は，付着開始点から自由端へ徐々に小さ

くなっており，マッシブモデル，版模擬モデルで付着応

力の分布に大きな違いは見られない。また，自由端先端

の付着応力が大きな値となっている。これは，先端要素

に定着具の影響を考慮したインターフェース要素を設定

したためであり，付着応力分布は定性的に評価できてい

ると考えられる。 

図 14 に最大主応力コンター図とひび割れ図を示す。

載荷初期では付着開始点と定着具付近の主応力が大きな

値となっており，荷重が増加するにつれ鉄筋に沿って主

応力も大きくなっている。両モデルとも表面にひび割れ

の発生は確認できないが，版モデルはかぶり側の表面に

 主応力コンター図 ひび割れ図 
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図 14 主応力コンター図 

 
     荷重-変位関係        荷重-ひずみ関係 

図 11 D19-4d-H 

 
    マッシブモデル         版模擬モデル 

図 12 荷重-最大主応力関係 
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図 13 付着応力ダイアグラム図 
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引張応力が発生している。鉄筋降伏以降も載荷を続けた

実際の版模擬試験体では鉄筋に沿ったひび割れが発生し

たため，ひび割れ発生についても定性的に評価できてい

ると考えられる。 

これらの結果より，提案式の適用により，非線形有限

要素解析による鉄筋の引抜き試験の再現性を確認した。 

5．再現解析（梁の曲げ載荷試験） 

ここでは，KK 合理化継手の性能確認のために実施し

たプレキャスト PC 床版接合部を模擬した梁の曲げ載荷

試験に対し，合理化鉄筋の付着構成則を用いた非線形有

限要素解析を実施し再現可能か検証した。 

（1） 解析モデル概要 

図 15 に示すプレキャスト PC 床版接合部を模擬した

梁試験体を解析対象とし，定着長は KK 合理化継手で採

用している 12d（230 mm）とした。図 16 に示すようなモデ

ル化を行い，物性値は，コンクリートの圧縮強度：51.6 N/mm2，

割裂強度：4.54 N/mm2，弾性係数：32 000 N/mm2，D19

鉄筋の降伏強度：406 N/mm2 とした。使用要素やモデル

特性は引抜きモデルと同様とし，支点部に拘束条件を設

定し，支間中央部上面を鉛直下向きに載荷した。 

試験体は接合部を後打ちとしたが，一体化していると

考え打継目地のモデル化は行わないこととした。 

（2） 解析結果 

図 17 に実測値と FEM 値の支間中央部の荷重－変位

関係を示す。FEM 値は，実測値の履歴や最大値をおおむ

ね再現できている。実測値は，荷重が 250 kN に達した

あたりで変位が増加し，荷重の増加が困難になったため

除荷を行い，約 3 mm の残留変位が生じた。一方，FEM

値は，荷重が 250 kN を超えても変位が増加し，荷重が

微増している。これは載荷荷重を単調増加させているた

めで，実際の載荷条件とは異なっているため 250 kN 以

降で挙動に差異が生じていると考えられる。 

合理化鉄筋のひずみ測点位置を図 18 に示し，荷重－

鉄筋ひずみ関係を図 19 に示す。FEM 値は，各測点にお

いてひずみの挙動をおおむね再現しており，80 kN～

100 kN で生じるひび割れによるひずみの増加も再現で

きている。 

 
上方より            鉄筋 

図 16 解析モデル 
 

 
図 17 荷重-変位関係 

 

 
図 18 合理化鉄筋ひずみ測点位置 
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      測点(3)            測点(4) 

図 19 荷重-鉄筋ひずみ関係 
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図 15 梁試験体形状 
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ひび割れ図を図 20 に示す。側面では，載荷板縁から斜

め方向に発生するひび割れが再現されており，底面では，

接合部付近の打継目地と定着具付近のひび割れ位置など

おおむね評価できている。 

これらの結果より，提案式の適用により，非線形有限

要素解析による梁試験の再現性を確認した。 

6．結論 

KK 合理化継手に用いる先端部にナットを設置した鉄

筋（合理化鉄筋）に対して引抜き試験を実施し，島らの

提案する付着応力－すべり－ひずみ関係式を基に合理化

鉄筋に適用可能な関係式を提案した。さらに，この関係

式を付着構成則として用いた非線形有限要素解析による

検証を行い，実測値におおむね一致することを確認した。 

本検討の範囲内において以下の知見を得た。 

 合理化鉄筋の付着応力－すべり－ひずみ関係式を適

用することにより，定着体の破壊および鉄筋降伏に至

るまでの範囲において，鉄筋自由端のすべりの算出が

可能となった。これにより，自由端すべりの限界値を

設定することで，コンクリート標準示方書［2022 年

制定／設計編：標準］に示される「定着破壊に対する

照査」の実施が可能であると考えられる。 

 合理化鉄筋の引抜き試験における自由端すべり，鉄筋

ひずみ分布，付着応力分布について，提案式による計

算値と非線形有限要素解析の解析値を比較した結果，

材料の非線形性や合理化鉄筋の付着構成則を適用し

た非線形有限要素解析が，実測値に近い結果を示すこ

とを確認した。また，床版を模擬した部材においても，

同解析手法による照査が可能であると考えられる。 

 梁の曲げ載荷試験に対する再現解析において，変位や

ひずみの挙動，ひび割れの発生状況が実測値と一致し

ていることを確認した。この結果から，非線形有限要

素解析により，部材としての照査が可能であると考え

られる。 

 

おわりに 

KK 合理化継手の開発にあたり，大阪大学名誉教授 松

井繁之先生には，実験方法をはじめとする多方面にわた

りご指導を賜りました。また，合理化鉄筋の付着構成則

の提案および非線形有限要素解析の実施に際しては，秋

田大学大学院理工学研究科 徳重英信教授，北海学園大学

工学部 高橋良輔教授より貴重なご助言とご指導をいた

だきました。ここに深く感謝の意を表します。 
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図 20 ひび割れ図 
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